
Online Algorithms with Advice for the Dual Bin Packing
Problem

Marc P. Renault

Abstract This paper studies the problem of maximizing the number of items
packed into n bins, known as the dual bin packing problem, in the advice
per request model. In general, no online algorithm has a constant competitive
ratio for this problem. An online algorithm with 1 bit of advice per request
is shown to be 3/2-competitive. Next, for 0 < ε < 1/2, an online algorithm
with advice that is (1/(1− ε))-competitive and uses O(1/ε) bits of advice per
request is presented.

Keywords online algorithms · online computation with advice · competitive
analysis · dual bin packing · multiple knapsack problem

1 Introduction

Online algorithms receive their input in a piecewise manner and make an
irrevocable decision on the output with each piece of the input before the
next piece is revealed, resulting in a cost or profit to the algorithm. The goal
is to either minimize the cost or maximize the profit. Traditionally, online
algorithms are studied using competitive analysis (cf. [7]). This is the worst case
ratio, called the competitive ratio, between the cost/profit associated with the
output of the algorithm and the cost/profit associated with the optimal output.
In the general context of competitive analysis, as compared to the general
context of the offline approximation ratio, no computational limits are placed
on the online algorithm. The emphasis of competitive analysis is to measure the
importance of future knowledge as opposed to the importance of computational
power. In particular, competitive analysis quantifies the difference between

Research supported in part by ANR project NeTOC (ANR-11-BS02-0015).

Marc P. Renault
CNRS and Université Paris Diderot, France.
E-mail: mrenault@liafa.univ-paris-diderot.fr

2 Marc P. Renault

an algorithm with no knowledge of the future and an algorithm with full
knowledge of the request sequence.

In many cases, competitive analysis can be seen as too restrictive [7,9,13]
as there are many times when it is reasonable to assume that an algorithm
has partial knowledge of the future. In order to handle the restrictive nature
of competitive analysis, online algorithms have been augmented using ad hoc
approaches such as lookahead (e.g. [18]), probability distributions about future
requests (e.g. [16,23]), and multiple solutions (e.g. [21,2]). Recently, in part as
a generalization of these ad hoc approaches, two models of online computation
with advice have been proposed [14,6]. In the model of advice of [6], the online
algorithm has access to an advice tape that it can read as needed, where the
bits of the advice tape are a function of the input. In the model of [14], a fixed
amount of information about the future is given to the algorithm with each
request. This is the model of online computation with advice that is used in
this paper. In the model of [14], the amount of advice used by an algorithm
is quantified by the number of bits needed to encode the advice per request
and is called the bits of advice. Online computation with advice provides a
general model for situations of partial knowledge of the future and has been
used to study a variety of classic online problems, e.g. paging [6], the k-server
problem [14,24], metrical task system [14], buffer management problems [12,
1], the knapsack problem [5], and the bin packing problem [8,25,3].

This paper studies the dual bin packing problem. The goal of this problem
is to maximize the number of items from a sequence (offline algorithms know
the whole sequence and can process the items in any order) packed into a
fixed number of bins. It is a special case of the multiple knapsack problem
(MKP), where the profit is the same for all the items and the capacity is
the same for all the knapsacks. The dual bin packing problem, MKP and
the Generalized Assignment Problem (GAP) (a generalization of MKP) have
been greatly studied in the offline setting (cf. [22]). While these problems have
also been studied in the online setting (e.g. [9,4,15,11]), they have been much
less studied than in the offline setting given that, in complete generality, no
constant competitive algorithms exist for the dual bin packing problem [9,11].

For the maximization problem studied here, an algorithm alg has a com-
petitive ratio of c if, for all finite request sequences σ, alg(σ) ≥ 1

c ·opt(σ)−α,
where alg(σ) (resp. opt(σ)) is the profit for an online algorithm (resp. offline
optimum) to process σ, and α is a constant that does not depend on σ. As
defined, the competitive ratio will be greater than or equal to 1. If the additive
constant α = 0, then the competitive ratio is strict. For offline algorithms, the
approximation ratio can be defined in an analogous manner to that of the
competitive ratio.

Related Work without Advice. In [10], the authors show that an offline
algorithm, First Fit Increasing(ffi), has an approximation ratio of 4/3.
ffi first sorts the input in increasing order and then packs it in a first fit
manner. Also, in the offline setting, the problem is NP-complete [17], and
a polynomial-time approximation scheme (PTAS) for a generalization of the

Online Algorithms with Advice for the Dual Bin Packing Problem 3

dual bin packing problem (MKP with equal capacity knapsacks) is presented
in [20].

In the general setting for this problem, no online algorithm can pack a con-
stant fraction of the items packed by the offline optimal algorithm regardless of
whether the algorithm is deterministic [9] or randomized [11]. Hence, the on-
line work has focused on various settings that either strengthen the algorithm
or weaken the adversary, e.g. [9,4,15,11]. When restricted to accommodating
sequences (sequences where all the items are packed in an optimal packing),
First Fit has an asymptotically tight competitive ratio of 8/5 [4]. Also in [4],
the authors consider a variant called Unfair First Fit that has an asymptot-
ically tight competitive ratio of 3/2. The algorithm Unfair First Fit rejects
items of size larger than 1/2 (even if there is space to pack it) so long as the
ratio between the total number of requests so far and the number of packed
items remains above 3/2.

Related Work with Advice. The knapsack problem with advice was studied
in [5], using the tape advice model of [6]. Note that, in the per request model
of [14] (the model considered here), this problem is trivially solvable, using
only 1 bit of advice per request. In [5], for the case of unit profit, Böckenhauer
et al. show that 1 bit of advice in total is sufficient for a competitive ratio of
2, and that logm bits of advice in total are required for a competitive ratio
below 2, where m is the length of the request sequence. In the general case,
Böckenhauer et al. show that no algorithm is competitive with less than logm
bits of advice. Also, an algorithm is presented that is (1 + ε)-competitive with
O((logm)/ε) bits of advice in total. This result depends on the ability to
encode the profit and the weight of the items efficiently in the advice, whereas
the (1 + ε)-competitive algorithm presented in this paper for the dual bin
packing problem (multiple knapsacks) does not have this restriction.

In [25], the authors consider the bin packing problem and scheduling prob-
lems. For those problems, the authors present (1 + ε)-competitive algorithms
that are inspired by (asymptotic) PTAS’ for the offline problem, usingO

(
1
ε log

(
1
ε

))
bits of advice per request. The 1/(1− ε)-competitive algorithm presented here
is inspired by the techniques used in [25] and the techniques used for the PTAS
presented in [20].

In Boyar et al. [8], they study the bin packing problem with advice, using
the model of [6]. They present a 3/2-competitive algorithm, using logm bits
of advice in total and a (4/3 + ε)-competitive algorithm, using 2m+ o(m) bits
of advice in total, where m is the length of the request sequence. As both
algorithms rely on reading O(log(m)) bits of advice prior to receiving any
requests, they would use O(log(m)) bits of advice per request in the online
advice model. In addition, they show that an online algorithm with advice
requires at least (m − 2n) log n bits of advice to be optimal, where n is the
optimal number of bins.

In [3], Angelopoulos et al. show that, for the bin packing problem, a con-
stant amount of advice in total is sufficient for a competitive ratio arbitrarily
close to 1.47012. They also show that, in total, linear advice is required for a

4 Marc P. Renault

competitive ratio better than 7/6 (in the tape advice model; in the per request
advice model, an algorithm has at least 1 bit of advice per request, i.e. at least
linear advice in total).

Results. In this paper, two algorithms with advice for the dual bin packing
problem are presented. The first algorithm uses 1 bit of advice per request to
indicate which items are to be packed using First Fit. It has a competitive
ratio of at most 3/2.

The second algorithm, for 0 < ε < 1/2, achieves a competitive ratio of
1/(1−ε), and uses O

(
1
ε

)
bits of advice per request. It is inspired by the offline

PTAS’ for GAP problems and the algorithms in [25]. This is of interest as
not all online problems allow algorithms with advice that can achieve com-
petitive ratios arbitrarily close to 1 with only a constant amount of advice
per request. That is, there are known non-constant bounds on the amount
of advice required to be 1-competitive for some problems, e.g. Metrical Task
System [14].

The approach of rounding and grouping items used here for the (1/(1−ε))-
competitive algorithm is similar to the approach of the (1+ε)-competitive bin
packing algorithm in [25]. However, in the algorithm for the dual bin packing
problem, bins containing more than 1/ε items are handled differently than
bins with less items. This allows for a small savings in the advice used in that
we do not have to worry about small items. The main savings comes from the
fact that, for the bins with at most 1/ε items, we only need to split them into
1/ε groups as opposed to the 1/ε2 groups for bin packing. This allows for a
savings in the amount of advice used per request by a factor of log

(
1
ε

)
(up

to constant factors). As with the (1 + ε)-competitive bin packing algorithm
in [25], the advice is based on an optimal packing and could be replaced with
a packing produced by a PTAS for the dual bin packing problem. That is,
the offline oracle could approximate an optimal solution which is then used to
generate the advice and, based on the advice, the offline approximation can
be approximated online.

Lastly, in [8], the authors show that at least (m − 2n) log n bits of advice
in total (at least

(
1− 2n

m

)
log n bits per request), where m is the length of

the request sequence and n is the optimal number of bins, are needed for any
online bin packing algorithm with advice to be optimal. Note that by using
the same techniques, the same bound on the amount of advice needed to be
optimal can be shown for the dual bin packing problem. That is, the lower
bound construction for the dual bin packing problem uses the same sets of
items as in the lower bound construction for the bin packing problem, where
the optimal bin packing solution uses n bins. Hence, the optimal packing for
the dual bin packing problem would pack all the items in the n bins whereas
an algorithm using less than (m − 2n) log n bits of advice in total will reject
at least 1 item. This follows from a similar argument to the claim in the bin
packing lower bound that shows that a bin packing algorithm using less than
(m− 2n) log n bits of advice in total will require at least n+ 1 bins.

Online Algorithms with Advice for the Dual Bin Packing Problem 5

2 Preliminaries

The dual bin packing problem consists of a sequence σ of items and a set B
of n bins (initially empty and numbered from 1 to n) with capacity 1. Each
rj ∈ σ is an item with size 0 < s(rj) ≤ 1 and |σ| = m. The goal is to maximize
the number of the items of σ assigned to the n bins such that, for all bins
bi ∈ B,

∑
rj∈bi s(rj) ≤ 1. That is, to pack as many items as possible in the n

bins. Items that are not packed are called rejected items.
An assignment of some items of σ to the set of bins B is called a packing.

Unassigned items of σ are the rejected items. A bin is valid if the total size of
the packed items in the bin is at most 1. An item ri is packed in a bin b if ri
is assigned to the bin b ∈ B in a packing. A bin b can accommodate an item
ri if the bin remains valid if ri is assigned to b. In this case, ri fits into b. A
packing is valid if all the bins in B are valid. An item ri ∈ b, where b is a bin
in B, may be denoted by ri ∈ B.

In the algorithms presented here, a common heuristics for bin packing,
first fit (ff) (cf. [19]), is used.

Definition 1 (first fit) To pack an item ri in a first fit manner, ri is
packed in the first bin that can accommodate ri in an ordering of the bins. If
no such bin exists, ri is rejected.

For an algorithm alg and a request sequence σ, the set of rejected items
is denoted by Ralg

σ , and the set of accepted items is denoted by Aalg
σ . Let

palgσ = bs(rj)−1c, where rj ∈ Ralg
σ is the smallest item rejected by alg. Let

P alg
σ be a packing produced by alg for the items of σ. For a given P alg

σ , let
kalgσ,i be the number of items in the i-th bin, let Balg

σ,i be the set of items packed
in the i-th bin, and let valgσ,i be the total size of the items packed in Balg

σ,i . For
two algorithms, alg1 and alg2, such that Ralg2

σ ⊆ Ralg1
σ , the set Dalg1,alg2

σ

is defined to be Ralg1
σ \Ralg2

σ . When it is clear by the context, the superscripts
and subscripts will be suppressed.

As in [14], a deterministic online algorithm with advice is an online algo-
rithm that is augmented with a query function to a finite advice space U ,
where |U | = 2b and b ≥ 0 is the amount of advice per request. The advice
received for request i is defined by ui : R∗ → U , where R∗ is the infinite set of
all finite request sequences. A sequence of pairs (gi, ui) defines the algorithm,
where gi : Ri × U i → Ai is the action function and Ai is the set of available
actions. For a request ri ∈ σ = r1, r2, . . ., the action ai of a online deterministic
algorithm with b bits of advice is gi(r1, . . . , ri, u1(σ), . . . , ui(σ)), i.e. a function
of all the requests and the advice received so far.

Throughout the paper, log is assumed to be base 2.

3 A 1.5-Competitive Online Algorithm with 1 bit of Advice per
Request

In this section, an online algorithm with advice called Subsequence First
Fit (sff) that uses 1 bit of advice is presented. First, an offline algorithm

6 Marc P. Renault

called Restricted Subsequence First Fit (rsff) is shown to be 3/2-
competitive. This bound is shown to hold for sff as, by definition, sff will
pack the same number of items as rsff.

Restricted Subsequence First Fit. Initially, define σrsff = σ. Then,
simulate the ff packing of σrsff. If |Rff(σrsff)| > 0, remove the largest item
from σrsff (for ties, remove the item with the smallest index). Repeat the
process using ff until all the items of σrsff can be packed in the n bins. This
is the packing produced by rsff.

The key properties of rsff are that the items are packed using ff and
that the largest items have been rejected, i.e. the size of every rejected item
is at least as large as any packed item. The following lemma shows that, on
average, the number of items in every bin for a packing produced by rsff is
at least prsff = bs(rj)−1c, where rj is the smallest rejected item.

Lemma 1 For any σ,
∑n
i=1 k

rsff
i ≥ prsffn.

Proof Let σrsff be the subsequence of σ that is packed by rsff and let rj be
the smallest item rejected by rsff. By the definition of rsff, |Rff

σrsff | = 0 and
|Rff
σrsff∪{rj}| > 0. Therefore, |P ff

σrsff | ≥ |P ff
σrsff∪{rj}| and, to prove the lemma, it

suffices to show that kffi ≥ prsff for all i ∈ [n] of the ff packing of σrsff∪{rj}.
Consider the ff packing of σrsff ∪ {rj}. By the definition of σrsff ∪ {rj},

no item is larger than s(rj). Suppose, for the sake of contradiction, that kffi <
p := prsff for some 1 ≤ i ≤ n. The packed items in the i-th bin have size less
than or equal to s(rj). The free space in the i-th bin is greater than or equal
to 1− (p− 1)(s(rj)) ≥ s(rj) implying that an item packed in the bins Bi+1 to
Bn or a rejected item should have been packed in the i-th bin by ff, which is
a contradiction. ut

The following lemma shows that there always exists an optimal packing
that rejects the largest items.

Lemma 2 For any σ, there exists an optimal packing such that Ropt is the
set of the |Ropt| largest items (for ties, the item with the smallest index is
rejected).

Proof Fix an optimal packing for σ. Let rj ∈ Ropt be the smallest rejected
item. Consider the largest ri ∈ Aopt. If s(ri) > s(rj), replace ri by rj in the
packing and add ri to Ropt. If s(ri) = s(rj) and i < j, replace ri by rj in the
packing and add ri to Ropt. Repeat this procedure until, for all ri ∈ Aopt,
s(rj) > s(ri), or s(rj) > s(ri) and j < i. The packing resulting from this
procedure is still optimal and all the rejected items are at least as large as all
the packed items. ut

In the following, it is always assumed that opt uses the optimal packing as
described by Lemma 2. In the next lemma, this optimal packing is considered,
and it is shown that the difference between the number of rejected items for
rsff and an optimal algorithm is less than n.

Online Algorithms with Advice for the Dual Bin Packing Problem 7

Lemma 3 For any σ, there exists an opt such that |D| = |Rrsff \ Ropt| ≤
n− 1.

Proof Fix an optimal packing for σ. By Lemma 2 and the definition of rsff,
we can assume that Ropt ⊆ Rrsff and Ropt is the set of the |Ropt| largest
items of Rrsff (ties are broken by rejecting the item with the smallest index).
Let s(rj) be the size of the smallest rejected item in Rrsff. The total size
of the items in D is at most the empty space of P rsff which is less than
s(rj)n. Therefore, s(rj)(|Rrsff|−|Ropt|) ≤

∑
η∈Rrsff\Ropt s(η) < s(rj)n. Hence,

|Rrsff \Ropt| = |Rrsff| − |Ropt| < n. ut

We are now ready to prove the upper bound on rsff.

Theorem 1 For any σ, the approximation ratio of rsff is at most 3/2.

Proof If there are empty bins, then rsff has packed all the items and opt(σ)
rsff(σ) =

1. In the following, we only consider instances with rejected items. Also, we
always assume that opt uses the optimal packing as described by Lemma 2.

Let s(rj) be the size of the smallest rejected item in Rrsff and let p := prsff.

Case 1: p ≥ 2 (s(rj) ≤ 1
2). In the packing by rsff, all the bins contain at

least p items on average by Lemma 1. Therefore, |Arsff| ≥ pn. Thus, using
Lemma 3, the approximation ratio is

opt(σ)

rsff(σ)
=
|Arsff|+ |D|
|Arsff|

<
pn+ n

pn
=
p+ 1

p
≤ 3

2
, for p ≥ 2.

Case 2: p = 1 (1
2 < s(rj)). Let q be the number of bins packed with at least

2 items and let AL be the set of accepted large items (size > 1/2). The first
fit packing guarantees that at most one of the n − q bins with a single item
contains a small item (size ≤ 1/2). Therefore, |AL| ≥ n− q − 1.

By the definition of opt (Lemma 2), opt packs the items of D and AL

(all of which are large). Since at most one large item can be packed per bin
and the number of bins is n, we have that |D| + |AL| ≤ n. Adding this to
|D| ≤ n− 1 from Lemma 3, we have that

|D| ≤ 2n− 1− |AL|
2

≤ n+ q

2
. (1)

Using (1) and the fact that |Arsff| ≥ 2q+ (n− q) = n+ q, we get that the
approximation ratio is

opt(σ)

rsff(σ)
=
|Arsff|+ |D|
|Arsff|

≤
n+ q + n+q

2

n+ q
=

3

2
.

ut

Now, an online algorithm with 1 bit of advice per request is defined and
shown to always pack exactly the same number items as rsff.

8 Marc P. Renault

Subsequence First Fit with 1 bit of Advice. If the bit of advice is 1, pack
the requested item using ff. Otherwise, the bit is 0 and the item is rejected.
The advice is based on the final subsequence σrsff of σ that would be packed by
rsff as defined previously. The advice bit for ri is defined to be 1 if ri ∈ σrsff

and 0 otherwise.

Theorem 2 For any σ, the competitive ratio of sff is at most 3/2.

Proof The final sequence of items of σrsff is defined such that they can be
packed, using ff, into the n bins. This fact and Theorem 2 imply that sff is
3/2-competitive. ut

In the following theorem, we show that the presented algorithm has a
competitive ratio of at least 4/3.

Theorem 3 sff has a competitive ratio of at least 4/3.

Proof For an ε, 0 < ε < 1/6, and an an even number of bins n, let σ be n
requests of size 1/2 − ε followed by n requests of size 1/2 + ε. An optimal
packing includes all the items for a total of |σ| := m = 2n items. sff packs
the first n requests in n/2 bins and then packs n/2 of the remaining items for
a competitive ratio of at least 2n

3n/2 = 4/3. ut

4 A (1/(1 − ε))-Competitive Algorithm with Advice

In this section, an algorithm with advice, denoted by dbpa (Dual Bin Pack-
ing Advice), is presented that has a competitive ratio of 1/(1 − 2ε), for
0 < ε < 1/2, and uses O

(
1
ε

)
bits of advice per request. This shows that an al-

gorithm can arbitrarily approach a competitive ratio of 1 with advice bits that
are inversely proportional to the approximation guarantee. It should be noted
that if the amount of bits of advice per request is log(n+ 1), then the trivial
algorithm with advice can be used to be optimal. That is, the trivial algorithm
is given a bin number (n+ 1 for a rejected item), as advice that indicates the
bin into which the item should be packed. Also, the competitive ratio of dbpa
is only better than that of sff for ε < 1/6. For ease of presentation, 1/ε is
assumed to be a natural number.

Initially, an algorithm adbpa (Asymptotic Dual Bin Packing Advice)
is presented that is (1/(1− ε))-competitive and uses O

(
1
ε

)
bits of advice per

request. Then, with a slight modification to adbpa and one additional bit of
advice, the algorithm dbpa is presented that has a strict competitive ratio of
(1/(1− 2ε)).

4.1 A (1/(1− ε))-Competitive Algorithm.

The algorithm presented in this section is called adbpa and has a competitive
ratio of 1/(1− ε). It uses O

(
1
ε

)
bits of advice per request for 0 < ε < 1/2.

Online Algorithms with Advice for the Dual Bin Packing Problem 9

The advice for adbpa is defined such that adbpa can distinguish between
two types of items in an optimal packing. They are: (1) items that belong to
bins with more than 1/ε items and (2) items that belong to bins with at most
1/ε items. Another bit of advice will indicate for each item of type (1) whether
to pack it in a first fit manner into a subset of the available bins or reject it.
The items of type (2) will be classified into groups based on the size of the
item (each group being an ε fraction of the total number of items). The advice
will indicate for each item of type (2) the index of the group to which the
item belongs and the type of bin (see bin pattern below) in which it should
be packed. The only items of type (2) that are rejected are the items from the
group containing the largest items. The algorithm and the advice are formally
defined in the following.

Let P opt be an optimal packing for σ. We assume without loss of generality
that opt is the optimal algorithm described in Lemma 2. We split the bins of
P opt into two sets of bins, P1 and P2, such that all the bins of P1 have more
than 1/ε items packed in each bin and P2 = P opt \ P1.

Let σ>
1
ε be the subsequence of items from σ that are packed in the bins

of P1. Further, let σsff be the subsequence of items from σ>
1
ε that would be

packed by sff (see Section 3) if given |P1| bins to pack σ>
1
ε .

Let σ≤
1
ε be the subsequence of items from σ that are packed in the bins

of P2. The items of σ≤
1
ε are sorted in non-increasing order of size and, based

on that ordering, the items are partitioned into
(
|σ≤ 1

ε | mod 1/ε
)

consecu-

tive groups of size
⌈
ε|σ≤ 1

ε |
⌉

followed by
(

1/ε− |σ≤ 1
ε | mod 1/ε

)
consecutive

groups of size
⌊
ε|σ≤ 1

ε |
⌋
. The items are assigned a type from 1 to 1/ε based on

their group in the sorted order. As the bins of P2 have at most 1/ε items, the
packing of each bin can be described by a 1/ε length vector, where the entries
are the types of the packed items. Note that the item types have values in the
range [1, 1/ε]. This vector will be called a bin pattern.

Items that are rejected by opt, i.e. ri /∈ σ>
1
ε ∪ σ≤ 1

ε , are also assigned a
type of 1. This is a technical detail to ensure that adbpa rejects all the items
rejected by opt without using an additional bit of advice.

We now define a process that assigns bin patterns to the items. The as-
signed bin patterns will be received as part of the advice to the algorithm. Let
Q be the multiset of the bin patterns of P2. Each item of type τ > 1 in σ≤

1
ε is

assigned a bin pattern in Q as follows. Let B be a set of |P2| bins to which bin
patterns will be assigned. Initially, the bins of B have no patterns assigned.
Consider each item ri ∈ σ≤

1
ε with type ti > 1 in the order it arrives as defined

by σ. Let t′i = ti−1 and pack ri in a bin b in B such that the number of items
packed in b with type ti is less than the number of items of type t′i as specified
by the pattern of b. If no such bin exists, pack ri in an empty bin b without
an assigned pattern. Assign a pattern p ∈ Q that contains type t′i to b, and
set Q = Q \ p. In both cases, ri is assigned the bin pattern of b. Note that the
assignment and the packing are feasible since the number of items of type τ

10 Marc P. Renault

is at least the number of items of type τ − 1, and all the items of type τ are
smaller in size than the items of type τ − 1.

We now define the online algorithm with advice. adbpa maintains two sets
of bins L1 and L2. As adbpa processes σ, the n bins will be assigned to either
L1 or L2 such that, after processing σ, |L1| = |P1| and |L2| = |P2|. Initially,
none of the bins are assigned to either set. L1 is the set of bins that contains
the items in σsff ⊆ σ> 1

ε , and L2 is the set of bins that contains the type τ > 1
items in σ≤

1
ε . As bins are added to L2, they will be assigned bin patterns. For

each ri in σ, adbpa gets a bit of advice per request to indicate if ri ∈ σ>
1
ε or

not and packs ri as follows.

ri ∈ σ>
1
ε : For each ri ∈ σ>

1
ε , an additional bit of advice indicates if ri ∈ σsff.

If so, adbpa packs ri into the bins of L1 in a first fit manner. If ri does
not fit, an unassigned bin is assigned to L1 and ri is packed in that bin.
Otherwise, the additional bit indicates that ri /∈ σsff and ri is rejected.

ri /∈ σ>
1
ε : For each ri /∈ σ>

1
ε , adbpa receives the item type, ti, as advice. If

ti = 1, the item is rejected. Otherwise, let t′i = ti − 1. In this case, adbpa
also receives an assigned bin pattern, pi (as defined previously) as advice,
where t′i is an entry of pi. The algorithm packs ri in a bin bj ∈ L2 with a
pattern pi, containing less items of type ti than there are entries of t′i in
pi. If no such bin exists, adbpa assigns an unassigned bin bj to L2, assigns
bj the pattern pi, and packs ri in bj .

From the definition of adbpa, we have that the items of σsff are packed in
|P1| bins, and the items of σ≤

1
ε are packed in |P2| which implies the following

fact.

Fact 1 adbpa will use n bins to pack the non-rejected items of σ.

In the next two lemmas, we bound from below the number of items of σ>
1
ε

and the number of items of σ≤
1
ε that adbpa packs as compared to opt. For x ∈

{σ> 1
ε , σ≤

1
ε }, let adbpax and optx be the number of items packed from σx by

adbpa and opt, respectively. Note that, adbpa(σ) = adbpaσ
> 1

ε +adbpaσ
≤ 1

ε

and opt(σ) = optσ
> 1

ε + optσ
≤ 1

ε = |σ> 1
ε |+ |σ≤ 1

ε |.

Lemma 4 adbpaσ
> 1

ε > (1− ε)optσ
> 1

ε .

Proof By the definition of σ>
1
ε , opt packs all the items of σ>

1
ε in |P1| bins.

Therefore, for any optimal packing of σ>
1
ε in |P1| bins, the set of rejected items

is empty, i.e.
∣∣∣Ropt

σ> 1
ε

∣∣∣ = 0. For |P1| bins and request sequence σ>
1
ε , Lemma 3

gives ∣∣∣Rrsff

σ> 1
ε
\Ropt

σ> 1
ε

∣∣∣ =
∣∣∣Rrsff

σ> 1
ε

∣∣∣ < |P1| . (2)

Let Rσ
> 1

ε be the rejected items of σ>
1
ε by adbpa when run on σ. adbpa

packs the items of σ>
1
ε into |P1| bins. This produces the same packing as sff

and, by the definition of sff, the same packing as rsff when packing σ>
1
ε

Online Algorithms with Advice for the Dual Bin Packing Problem 11

into |P1| bins. This implies that
∣∣∣Rrsff

σ> 1
ε

∣∣∣ = |Rσ
> 1

ε | when the number of bins

used by rsff to pack σ>
1
ε is |P1|. Further, using (2), we have that

|Rσ
> 1

ε | < |P1| < εoptσ
> 1

ε ,

where the last inequality follows from the fact that optσ
> 1

ε > 1
ε |P1| since, in

opt, the items of σ>
1
ε are packed into |P1| bins such that there are more than

1/ε items in each bin. Therefore,

adbpaσ
> 1

ε = optσ
> 1

ε − |Rσ
> 1

ε | > (1− ε)optσ
> 1

ε

ut

Lemma 5 adbpaσ
≤ 1

ε > (1− ε)optσ
≤ 1

ε − 1 .

Proof adbpa, by definition, will reject the type 1 items of σ≤
1
ε and pack the

rest of the items of σ≤
1
ε . Therefore, there are

⌈
ε|σ≤ 1

ε |
⌉
< εoptσ

≤ 1
ε + 1 items

rejected by adbpa. So, adbpaσ
≤ 1

ε > (1− ε)optσ
≤ 1

ε − 1 . ut

Formal Advice Definition. The bin pattern vectors, padded to a length of
exactly 1/ε, have at most 1

ε + 1 different possible values per entry (1
ε values

for each item type and an additional value for the padding). Since the order of
the items in a bin does not matter, vectors will have the entries ordered from
largest to smallest. The number of patterns is less than the number of ways to
pull 1/ε names out of a hat with 1/ε+ 1 names, where repetitions are allowed

and order is not significant. Therefore, there are at most
(
2/ε
1/ε

)
≤
(

2e/ε
1/ε

)1/ε
=

(2e)
1
ε different bin patterns and at most

⌈
log(2e)
ε

⌉
bits of advice are needed

to specify a pattern from an enumeration of all possible patterns, where e is
Euler’s number.

Per request, the advice string will be xyz, where x is 1 bit in length, y has
a length of dlog (1/ε)e bits to indicate the item type, and z has a length of⌈
log(2e)
ε

⌉
bits. The advice string xyz is defined for request ri as follows.

x =

{
1, if ri ∈ σ>

1
ε .

0, otherwise.

y =


1, if x = 1 and ri ∈ σsff .

0, if x = 1 and ri /∈ σsff .

The type of ri encoded in binary, if x = 0 .

z =

0, if x = 1 or z = 1 .
The index of the bin pattern
assigned to ri encoded in binary,

otherwise.

12 Marc P. Renault

Note that when x = 1, the last bit of y is the second advice bit used to
pack the σ>

1
ε items. Immediate from the advice definition is the following fact.

Fact 2 adbpa uses O(1
ε) bits of advice per request.

Finally, we show that adbpa has a competitive ratio of 1/(1− ε).

Lemma 6 For any ε, 0 < ε < 1/2, adbpa(σ) > (1− ε)opt(σ)− 1.

Proof Using Lemma 4 and Lemma 5, we get that

adbpa(σ) = adbpaσ
> 1

ε + adbpaσ
≤ 1

ε

> (1− ε)optσ
> 1

ε + (1− ε)optσ
≤ 1

ε − 1

= (1− ε)opt(σ)− 1 .

ut

Fact 2 and Lemma 6 immediately imply the following theorem.

Theorem 4 For any ε, 0 < ε < 1/2, adbpa has a competitive ratio of 1
1−ε

and uses O(1
ε) bits of advice per request.

4.2 A strict (1/(1− 2ε))-Competitive Algorithm.

The algorithm dbpa is defined in this section. It behaves in two different
manners, depending on the optimal number of packed items. One bit, denoted
by w, is used to distinguish between the two cases and is sent as advice with
each item. In the first case, dbpa runs adbpa as previously described. In the
second case, dbpa is able to pack the items optimally in one of two different
ways. The choice of which way to pack the items depends on ε and n. The
details of these two cases are as follows.

Case 1: opt(σ) > 1/ε (w = 0). dbpa will run adbpa as described previously.
The only difference is that the advice per request for adbpa is prepended with
an additional bit for w. Since opt(σ) > 1/ε, we get the following corollary to
Lemma 6 for this case.

Corollary 1 If w = 0, then, for any ε, 0 < ε < 1/2, dbpa(σ) > (1 −
2ε)opt(σ).

Case 2: opt(σ) ≤ 1/ε (w = 1). For this case, the algorithm can determine if
the number of bins is more than 1/ε as ε and the number of bins is known. If
the number of bins given to the algorithm is at least 1/ε, then the algorithm
packs one item per bin and is optimal.

Otherwise, the number of bins is less then 1/ε. For each ri ∈ σ, we define
the advice (after w) to be the bin number in which ri is packed in an optimal
packing. This can be done with dlog(1/ε)e bits. dbpa will pack ri into the

Online Algorithms with Advice for the Dual Bin Packing Problem 13

bin as specified by the advice. Note that the packing produced in this case is
optimal.

Immediate from the definition of the algorithm and the advice, and Corol-
lary 1, we get the following Theorem.

Theorem 5 For any ε, 0 < ε < 1/2, dbpa has a strict competitive ratio of
1

1−2ε and uses O
(
1
ε

)
bits of advice per request.

5 Conclusion

In this paper, we considered the dual bin packing problem and showed that
an algorithm that uses 1 bit of advice per request has a competitive ratio
of 3/2. This algorithm ensures that the largest items are rejected and packs
the remaining items in a reasonably efficient manner (first fit). It would be
interesting to close the gap for this algorithm and, in particular, to show which
properties (e.g. ff and rejecting the largest) are necessary for an algorithm to
be 4/3-competitive.

We showed that it is possible to approach a competitive ratio of 1 with a
constant amount of bits of advice per request, yet Ω(log n) bits of advice per
request are required to be optimal. A natural follow up to this work would be
to explore more general versions of this problem. Many of the offline versions
of the generalized problems have PTAS’. It would be interesting to see if the
techniques here could be extended to the more generalized versions of the
problems.

Finally, it would be interesting to exploring this problem in the advice
complexity model of [6]. In this model, the algorithm has access to a tape of
advice bits which can be read as needed thus allowing for sub-linear (in the
size of input) advice in total.

Acknowledgements

I would like to thank Reza Dorrigiv for suggesting this as an interesting prob-
lem to study. Also, I would like to thank Reza Dorrigiv and Norbert Zeh for
useful preliminary discussions and Adi Rosén for helpful comments.

References

1. Adamaszek, A., Renault, M.P., Rosén, A., van Stee, R.: Reordering buffer management
with advice. In: Approximation and Online Algorithms - 11th International Workshop,
WAOA 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers,
pp. 132–143 (2013)

2. Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules. In: Al-
gorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copen-
hagen, Denmark, July 2-4, 2014. Proceedings, pp. 13–25 (2014)

14 Marc P. Renault

3. Angelopoulos, S., Dürr, C., Kamali, S., Renault, M.P., Rosén, A.: Online bin packing
with advice of small size. In: Algorithms and Data Structures - 14th International
Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, pp.
40–53 (2015)

4. Azar, Y., Boyar, J., Epstein, L., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N.: Fair
versus unrestricted bin packing. Algorithmica 34(2), 181–196 (2002)

5. Böckenhauer, H., Komm, D., Královic, R., Rossmanith, P.: The online knapsack prob-
lem: Advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

6. Böckenhauer, H.J., Komm, D., Královic, R., Královic, R., Mömke, T.: On the advice
complexity of online problems. In: ISAAC, pp. 331–340 (2009)

7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge
University Press, New York, NY, USA (1998)

8. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice.
Algorithmica 74(1), 507–527 (2016)

9. Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: A generalization
of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)

10. Coffman, E.G., Leung, J.Y.T., Ting, D.W.: Bin packing: Maximizing the number of
pieces packed. Acta Inf. 9, 263–271 (1978)

11. Cygan, M., Jez, L., Sgall, J.: Online knapsack revisited. Theory Comput. Syst. 58(1),
153–190 (2016)

12. Dorrigiv, R., He, M., Zeh, N.: On the advice complexity of buffer management. In:
ISAAC, pp. 136–145 (2012)

13. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms.
SIGACT News 36(3), 67–81 (2005)

14. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

15. Epstein, L., Favrholdt, L.M.: On-line maximizing the number of items packed in
variable-sized bins. Acta Cybern. 16(1), 57–66 (2003)

16. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1-1/e. In: Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’09, pp. 117–126. IEEE Computer Society,
Washington, DC, USA (2009)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman (1979)

18. Grove, E.F.: Online bin packing with lookahead. In: Proceedings of the sixth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’95, pp. 430–436. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (1995)

19. Johnson, D.: Near-optimal bin packing algorithms. Ph.D. thesis, MIT (1973)
20. Kellerer, H.: A polynomial time approximation scheme for the multiple knapsack prob-

lem. In: RANDOM-APPROX, pp. 51–62 (1999)
21. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the

partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)
22. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)
23. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: An approach

based on strongly factor-revealing lps. In: Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing, STOC ’11, pp. 597–606. ACM, New York, NY,
USA (2011)

24. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server problem.
Theory Comput. Syst. 56(1), 3–21 (2015)

25. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing
and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)

