
Reordering Buffer Management with Advice

Anna Adamaszek · Marc P. Renault · Adi Rosén · Rob van Stee

Abstract In the reordering buffer management prob-

lem, a sequence of coloured items arrives at a service

station to be processed. Each colour change between

two consecutively processed items generates some cost.

A reordering buffer of capacity k items can be used to

preprocess the input sequence in order to decrease the

number of colour changes. The goal is to find a schedul-

ing strategy that, using the reordering buffer, minimizes

the number of colour changes in the given sequence of

items.

We consider the problem in the setting of online

computation with advice. In this model, the colour of

an item becomes known only at the time when the item

enters the reordering buffer. Additionally, together with

each item entering the buffer, we get a fixed number of

A preliminary version of this paper appeared in the Proc. of
the 11th Workshop on Approximation and Online Algorithms
(WAOA 2013); LNCS, 2013, pp.132-143.

The work was performed while the first and the fourth author
were at the Max-Planck-Institut für Informatik, Saarbrücken,
Germany.

The first author is supported by the DFF-MOBILEX mobil-
ity grant from the Danish Council for Independent Research.
The second and third authors were partially supported by
ANR project NeTOC.

Anna Adamaszek
University of Copenhagen, Denmark
E-mail: anad@di.ku.dk

Marc P. Renault
CNRS and Université Paris Diderot, France
E-mail: mrenault@liafa.univ-paris-diderot.fr

Adi Rosén
CNRS and Université Paris Diderot, France
E-mail: adiro@liafa.univ-paris-diderot.fr

Rob van Stee
University of Leicester, Leicester, United Kingdom
E-mail: rob.vanstee@le.ac.uk

advice bits, which can be seen as information about

the future or as information about an optimal solution

(or an approximation thereof) for the whole input se-

quence. We show that for any ε > 0 there is a (1 + ε)-

competitive algorithm for the problem which uses only

a constant (depending on ε) number of advice bits per

input item. This also immediately implies a (1 + ε)-

approximation algorithm which has 2O(n log 1/ε) running

time (this should be compared to the trivial optimal al-

gorithm which has a running time of kO(n)).

We complement the above result by presenting a

lower bound of Ω(log k) bits of advice per request for

any 1-competitive algorithm.

Keywords reordering buffer management · online

algorithms · online algorithms with advice · competitive

analysis

1 Introduction

The reordering buffer management problem was intro-

duced in 2002 by Räcke et al. [24]. The problem mod-

els a service station that must process a sequence of

coloured items. At any time, the service station is con-

figured to process items of a certain colour c. Chang-

ing the configuration of a service station to a different

colour generates a cost. The total cost is the number of

colour switches performed while serving a sequence of

items. In order to reduce this cost, the service station is

equipped with a reordering buffer that has the capacity

to hold k items. The service station can process any

of the items contained in its buffer. Using this reorder-

ing buffer, the goal is to find a schedule that minimizes

the number of colour switches. In the online setting,

the colour of each item is known only once the item

enters the reordering buffer (see Section 2 for a formal

definition).

2 Anna Adamaszek et al.

This problem is a natural model for job shops such

as paint shops and blow moulding facilities, where there

is a large cost in terms of time and materials to switch

colours (paint or plastic) due to the need to clean out

the old colour and set-up the equipment in order to

correctly produce the new colour. For this reason, such

production plants are equipped with a reordering buffer

to preprocess the sequence of incoming items (for exam-

ple cars that need to be painted) or production orders

[19]. This framework has many applications in various

areas, such as production engineering, storage systems,

network optimization and computer graphics (see [5,8,

19,22,24] for more details).

In this paper, we study the problem in the setting

of online computation with advice [16]. This setting has

received much attention in recent years as it relaxes

the traditional online setting of no information about

the future, and allows the online algorithm to get some

partial information about future requests or about the

structure of an optimal (or near-optimal) solution. In

this model, the amount of information about the future

available to the online algorithm is quantified and the

interplay between the amount of information and the

attainable competitive ratio is studied. Informally (see

Section 2.1 for a formal definition), in this setting, the

online algorithm receives with each request some b bits

of advice which are the value of a function, defined by

the algorithm, of the whole input sequence (including

the future). In this manner the online algorithm receives

some information about the future. Note that we view

the advice as given by an oracle, i.e., we do not consider

whether or not the advice can be computed efficiently

when the whole input sequence is known.

1.1 Related work

Since its introduction in 2002 [24], the reordering

buffer management problem has been extensively stud-

ied. In the online setting, the best known results are

a deterministic O(
√

log k)-competitive algorithm by

Adamaszek et al. [2], and a randomized O(log log k)-

competitive algorithm by Avigdor-Elgrabli and Rabani

[7]. To complement this, there are nearly matching

lower bounds of Ω(
√

log k/log log k) and Ω(log log k)

on the competitive ratio of any online deterministic and

randomized algorithms, respectively [2]. In the offline

setting, the problem is known to be NP-hard [12,4],

and the best known result is a constant-factor deter-

ministic approximation algorithm by Avigdor-Elgrabli

and Rabani [6].

The deterministic online algorithm by Adamaszek

et al. [2] combines two different mechanisms. One is

based on penalizing colours for using up space in the

buffer at the time when a colour change occurs, en-

suring that colours do not stay in the buffer for too

long, blocking valuable resources. The other mechanism

marks colours with a similar number of elements, which

together occupy a large fraction of the space in the

buffer. When a colour change is required, one of the

marked colours is chosen to be output. The random-

ized online algorithm by Avigdor-Elgrabli and Rabani

[7] has two steps, which are executed in parallel. The

first one computes a fractional solution to an LP relax-

ation to the problem, based on the online primal-dual

schema. The solution is updated deterministically after

each step of the algorithm. In the second stage, the frac-

tional solution is rounded, using a randomized online

algorithm. The offline algorithm by Avigdor-Elgrabli

and Rabani [6] is based on an intricate rounding of a

solution of an LP relaxation of the problem.

More general versions of the reordering buffer man-

agement problem have been studied, where the switch-

ing cost for switching from an item of colour c to an

item of colour c′ depends on c′ (e.g. [18,2]), or on both

c and c′ [17].

The model of online computation with advice con-

sidered in the present paper was introduced by Emek

et al. [16]. In that paper, the authors give tight bounds

of Θ(log n/b) on the competitive ratio of deterministic

and randomized online algorithms with advice for met-

rical task systems, where n is the number of states of

the system and b is the number of advice bits per re-

quest. They also give a deterministic online algorithm

with advice for the k-server problem which is kO(1
b)-

competitive, whereΘ(1) ≤ b < log k. This has been first

improved by Böckenhauer et al. [10], and subsequently

by Renault and Rosén [25] to
⌈
dlog ke
b−2

⌉
. In this model,

the advice is online and the total amount of advice is

at least linear in the length of the request sequence.

Böckenhauer et al. [11] introduced a different model

for online algorithms with advice. In their model, all

bits of advice are written to an infinite advice tape prior

to the execution of the algorithm. The algorithm can

read the bits of advice as needed, and therefore it is

possible that the algorithm uses a total number of ad-

vice bits that is sub-linear with respect to the length

of the request sequence. The advice in this model is

semi-online, as the algorithm can read the entire ad-

vice string prior to serving the request sequence. Both

models are inspired by the model of online computation

with advice originally proposed by Dobrev et al. [13],

wherein the oracle could provide information without

a cost by using an empty string as the advice for a

request, and the focus was on optimality. Several re-

sults have been given in the semi-online model [13,11,

20,21,10]. For example, in [13,11], the authors explore

Reordering Buffer Management with Advice 3

the number of bits of advice required for deterministic

and randomized paging algorithms, algorithms for the

DiffServ problem, algorithms for a special case of the

job shop scheduling problem, and algorithms for the

disjoint path allocation problem, to be 1-competitive.

Algorithms for the online advice model can be run

for the semi-online advice model, and lower bounds for

the semi-online advice model apply to the online advice

model.

In this work, we present an algorithm for the re-

ordering buffer management problem that, for any

ε > 0, has a competitive ratio of 1 + ε, using only

O(log(1/ε)) advice bits per request. This algorithm has

a flavour of a polynomial-time approximation scheme

(PTAS). That is, with the number of advice bits per

request that is a constant depending on ε (as com-

pared to a running time that is polynomial in ε for

a PTAS), we achieve a solution that has a competitive

ratio of 1 + ε. We term this type of algorithm with ad-

vice as a linear advice approximation scheme (LAAS).

Renault et al. [26] present a LAAS for the Bin Pack-

ing problem, and for a family of scheduling problems

on m identical machines that includes the objectives of

minimizing the makespan, minimizing the `p norm, and

machine covering. Also, an algorithm for the scheduling

problem on m identical machines with the objective of

minimizing the makespan is presented by Albers and

Hellwig [3]. That paper does not explicitly consider the

advice model, but it considers an online algorithm that

is able to maintain multiple schedules and outputs the

best schedule at the end of the execution. In particular,

they present an algorithm that has a competitive ratio

of (1+ε) and maintains (m/ε)O(log(1/ε)/ε) schedules. In

the semi-online advice model, the advice consisting of

O(log(1/ε)/ε) log(m/ε) advice bits in total would indi-

cate the index of the best schedule. This result was re-

discovered by Dohrau [14] explicitly for the semi-online

advice model.

Dorrigiv et al. [15] consider a transmission control

problem with a buffer, called the buffer management

problem. Their problem is different from the problem

considered in this work. Specifically, their buffer is a

FIFO buffer of capacity k items, meaning that each item

inserted into the buffer is always placed at the end, and

the items from the buffer are processed sequentially.

Each item is assigned a value, which corresponds to

the profit gained by processing the item. When a new

item arrives, the algorithm has to decide whether the

item should be inserted into the buffer and therefore

eventually processed, or rejected. If the buffer is full,

the item must be rejected. The goal is to maximize

the total value of the processed items (i.e., the total

value of the items inserted into the buffer). Dorrigiv

et al. consider the problem when there are items with

two different values (high and low). They show that

Θ((n/k) log k) bits of advice in total are required for

an optimal solution. Notice that for this problem one

can easily get an optimal solution with one bit of advice

per item, where the bit of advice tells us whether the

item should be inserted into the buffer or rejected.

1.2 Contributions

This is the first work on the reordering buffer man-

agement problem in the advice framework. First, we

present an online algorithm with advice that uses two

bits of advice per request and has a competitive ratio

of 1.5. We then extend this algorithm by allowing it to

use more bits of advice per request in order to obtain

a better competitive ratio. Specifically, for any ε > 0,

the algorithm has a competitive ratio of 1 + ε, using

O(log(1/ε)) advice bits per request, i.e., it is a LAAS.

Unlike for other problems where a LAAS is known [26,

3,14], there is no offline PTAS known for the reorder-

ing buffer management problem. In fact, our result can

be interpreted as an offline (1 + ε)-approximation al-

gorithm with a running time of 2O(n log 1/ε) (see Con-

clusions). This is a favorable trade-off compared to the

trivial optimal algorithm which uses a dynamic pro-

gram of size kO(n), and shows an unexpected benefit of

studying online algorithms with advice.

Similar to the other linear advice approximation

schemes, the advice sequence is constructed based on

some feasible solution. That is, when the advice se-

quence is constructed based an optimal solution, as de-

scribed below, the algorithm has a competitive ratio of

1 + ε. If the advice was constructed based on some c-

approximation solution, then the algorithm would out-

put a c(1 + ε)-competitive solution. This makes the al-

gorithm useful even if the oracle constructing the ad-

vice sequence based on the complete input sequence is

computationally bounded. For instance, the known ap-

proximation algorithm [6] could be used for that.

For any input sequence, we show how to construct

the advice, based on an optimal solution for the given

sequence, which allows us to obtain a good competi-

tive ratio. The overview of the construction is as fol-

lows. The advice bits for each element of a colour c

encode how the algorithm should handle all “adjacent”

elements of colour c, i.e., whether the algorithm should

keep all elements of colour c in the buffer until more

items of colour c arrive, output them at once, or output

them, but only after a certain waiting period. The idea

is that the order of processing the colours with the lat-

ter property is not contained in the advice of single ele-

ments (as that would require too many bits of advice),

4 Anna Adamaszek et al.

but it is encoded among all advice bits of the elements

of the given colour. The key obstacle is that with a

small number of advice bits per item we cannot encode

the exact order in which the colours should be output,

in particular when a small number of elements of some

colour has to wait for a long time in the buffer. To deal

with this problem, we modify the optimal solution (in-

creasing its cost, i.e., making the solution sub-optimal)

by selecting some elements which will be removed ear-

lier from the buffer. This frees additional space in the

buffer, which allows us to keep some other elements

longer in the buffer, until one more item of their colour

arrives, after which we can output these elements im-

mediately. This significantly shortens the list of colours

which have to be output “soon, but not yet”. After this

operation, we can encode the desired position in the

list for all but a small fraction of elements (which also

must be removed earlier from the buffer). We bound the

increase in the cost of the generated output sequence

from above by charging the additional colour changes

to the colour changes of the optimal solution.

We complement these results by presenting a lower

bound of Ω(log k) on the number of bits of advice per

item needed to obtain a competitive ratio of 1. Notice

that if we allow using dlog ke bits of advice per item,

we can easily obtain an optimal algorithm, as we can

use the advice to encode the index in the buffer of an

item which should be processed at the current step of

the algorithm.

2 Preliminaries

2.1 The Advice Model

We use the definition of deterministic online algorithms

with advice as presented in [16]. An online algorithm

is defined as a request-answer game that consists of

a request set R, a sequence of finite non-empty an-

swer sets A1, A2, . . . , and a sequence of cost functions

costn : Rn × A1 × A2 × · · · × An → R+ ∪ {∞} for

n = 1, 2, In addition, there is an advice space U

of size 2b, where b ≥ 0 is the number of bits of ad-

vice provided to the algorithm with each request. With

each request, the online algorithm receives some advice

that is defined by a function, ui : σ → U , where i

is the request index, that is applied to the whole re-

quest sequence σ = R∗, including future requests. A

deterministic online algorithm with advice can, thus,

be represented as a sequence of pairs (gi, ui), where gi
is the function defining the action of the online algo-

rithm at step i and is defined gi : Ri × U i → Ai for

i = 1, 2, The action taken by the online algorithm

after receiving request ri is therefore a function of the

first i requests, r1, . . . , ri, and the advice received so

far, u1(σ), . . . , ui(σ).

We use the standard definitions of competitive anal-

ysis. We say that an algorithm alg is γ-competitive if,

for every finite request sequence σ, we have alg(σ) ≤
γ ·opt(σ)+ ζ, where ζ is a constant which does not de-

pend on the request sequence σ. Here alg(σ) denotes

the cost of the solution generated by alg for σ, and

opt(σ) is the cost of an optimal solution for σ.

In this paper, we use regular expressions to define

the language to which strings of advice belong, and

we follow the standard notations (cf. [23], Section 1.8,

Finite representations of languages and [1], Section 9,

Regular Expressions).

2.2 The Lower Bound Technique

The general lower bound technique which we are us-

ing for lower bounding the number of advice bits per

request was introduced by Emek et al. [16]. They in-

troduced the generalized matching pennies problem

(gmp), showed a lower bound on the number of ad-

vice bits required for gmp, and then presented reduc-

tions from gmp to other online problems to obtain lower

bounds for them.

An instance of the (Φ, τ)-gmp problem consists of a

sequence of requests σ, where each request ri ∈ σ cor-

responds to a value from the set {1, . . . , Φ}. The online

algorithm has to output a sequence of actions A, where

for each action ai ∈ A we have ai ∈ {1, . . . , Φ}. The

action ai generates cost (1 + 1/τ) if ai 6= ri, otherwise

it generates only a dummy cost of 1/τ . The difficulty

of the problem is that the action ai has to be output

before the algorithm has access to the request ri. In

[16], Emek et al. prove that for Φ ≥ 4, any determinis-

tic or randomized algorithm with advice for gmp that

uses b ≤ logΦ
3 bits of advice per request is (1 + Ω(τ))-

competitive.

In [9], Böckenhauer et al. introduce a similar prob-

lem of string guessing with known history, defined for-

mally as follows.

Definition 1 ([9]) The string guessing problem with

known history over an alphabet Σ of size q ≥ 2

(q-SGKH) is an online minimization problem. The in-

put consists of an integer n and a request sequence

σ = r1, . . . , rn, where ri ∈ Σ. An online algorithm A

outputs a sequence of answers a1, . . . , an such that ai =

fi(n, r1, . . . , ri−1) ∈ Σ for some computable function

fi, i.e., the algorithm knows the requests r1, . . . , ri−1
before it has to output ai. The cost of A is the Ham-

ming distance between a1, . . . , an and r1, . . . , rn, i.e.,

the number of wrongly guessed characters.

Reordering Buffer Management with Advice 5

The q-SGKH problem is equivalent to the gmp

problem without the dummy cost of 1/τ , where the

parameter q corresponds to Φ from gmp. In [9],

Böckenhauer et al. prove the following result, which is a

refinement of the result of [16] for the case of determin-

istic algorithms. Notice that this result holds for any

Φ ≥ 2, and the range for b is increased to the full range

of [1, logΦ].

Theorem 1 ([9]) Consider an input string of length n

for q-SGKH. The minimum number of advice bits per

request for any online algorithm that is correct for more

than αn characters, for 1/q ≤ α < 1, is (1 − Hq(1 −
α)) log2 q, where Hq(p) = p logq(q− 1)− p logq p− (1−
p) logq(1− p) is the q-ary entropy function.

This result is useful for establishing lower bounds

on the number of bits of advice required for obtaining

a certain competitive ratio. We note that Theorem 1 is

stronger than stated, as it holds even when the whole

advice sequence is received in advance, since, in the

proof of Theorem 1 in [9], such an assumption is made.

When we apply this theorem in Section 7.4, we also

make the assumption that the whole advice sequence is

known in advance.

2.3 Reordering Buffer Management Problem

In the reordering buffer management problem (RBM),

we are given a random access buffer of size k, and a

finite request sequence σ = r1, . . . , rn. Each request ri ∈
σ (also called item) is characterized by a colour c(ri).

We denote by Cσ = 〈c(r1), . . . , c(rn)〉 the sequence of

colours corresponding to the consecutive requests of σ.
At each time, some colour c is set as the service colour.

Initially, the buffer is empty and the service colour is

not set to any colour. The algorithm does not know

the length n of the input sequence, nor the number of

colours in the sequence.

Definition 2 ([24]) The current request (or current

item) of the request sequence σ is the first item in σ

that has not yet entered the buffer.

Let the request r ∈ σ be the current request. The

algorithm does not know the colour c(r) until r enters

the buffer. As long as the buffer is not empty or there

exists a current request, the algorithm can perform ex-

actly one of the following actions.

– Any item in the buffer with the same colour as the

service colour can be output, i.e., removed from the

buffer.

– The service colour can be switched to a different

colour.

– If there exists a current request r ∈ σ and the buffer

is not full, r can enter the buffer and the next re-

quest in σ becomes the current request.

We say that an item r ∈ σ is served when it is removed

from the buffer. The cost of serving a request sequence

σ equals the number of colour switches performed. The

goal is to serve σ generating minimum cost.

The following observation is immediate from the

fact that any algorithm must perform a number of

colour switches greater or equal to the number of dis-

tinct colours in the request sequence.

Observation 1 The number of distinct colours in the

request sequence σ is a lower bound on the optimal cost.

Definition 3 ([24]) For an input sequence σ and an

algorithm alg, a colour block is a maximal sequence

of items from σ with the same colour that are output

consecutively by alg.

Note that all elements of a colour block are output by

the algorithm alg on a single colour switch. Note also

that alg can have items from more than one colour

block of the same colour in the buffer if the algorithm

switches to another colour before serving all elements

of the current service colour.

Definition 4 ([24]) An algorithm for the reordering

buffer management problem is called lazy if it has the

following two properties.

– If the buffer is not full and there exists a current

item r ∈ σ, r is immediately brought into the buffer

(i.e., the algorithm can output an item or change the

service colour only when the buffer is full or there

is no current item).

– The algorithm only changes the service colour when

there are no items in the buffer with the current

service colour.

Without loss of generality, we will always assume that

opt is lazy. We can do this as any algorithm alg can

be transformed into a lazy algorithm alglazy at no ad-

ditional cost [24]. Note that a lazy algorithm can have

only one colour block of a given colour in the buffer.

In this paper, the notion of time corresponds to the

index of the current request. That is, when the current

request is rτ , it is time τ . Hence, at time τ , the requests

r1, . . . , rτ−1 have already entered the buffer and, pos-

sibly, have been output. An online algorithm does not

know the colour c(rτ) at time τ (or the associated ad-

vice bits). An algorithm with advice has received the

advice bits for r1, . . . , rτ−1. After the last element of

the sequence rn has entered the buffer, the time ad-

vances to n + 1 and the algorithm must serve all the

6 Anna Adamaszek et al.

remaining items in the buffer. We say that an item ri is

older than rj , and that rj is younger that ri, if i < j.

Without loss of generality, we assume that the oldest

item is output whenever a lazy algorithm has more than

one item of the current service colour in the buffer.

Consider a colour block B of items output by a lazy

opt, beginning at some time τ . In the following lemma,

we show that a lazy algorithm alg can output all the

items ofB with a single colour switch, beginning at time

τ or later. Before we prove the lemma, we describe some

notations.

Definition 5 For a colour c, let a c-buffer be a buffer

that ignores items of colour c and stores items of any

colour other than c.

We can view the serving of a colour as follows. Con-

sider a colour block B that is served by a lazy algorithm

alg. Suppose that alg has z items of colour c in its

buffer at time τ , when it switches to the colour c. Algo-

rithm alg stops serving colour c exactly after z items

that are not of colour c enter the buffer after time τ .

For such a colour block B and algorithm alg, we de-

fine an algorithm algB that starts at time τ with an

empty c-buffer of size z. Then, the algorithm algB be-

gins reading the pending input of alg and stops when

the c-buffer is full. Let τ ′ be the time step when the c-

buffer of algB is full. At the time τ ′, the buffer of alg

no longer contains any items of colour c. It contains the

z items that the c-buffer of algB contains at time τ ′,

together with the k − z items that are not of colour c

that were in the buffer of alg at time τ .

Lemma 1 Let B = {e0, . . . , e`−1} be a colour block

output by a lazy opt with a single colour switch that

occurs at time τ . Consider a lazy algorithm alg. If, for

some i, 0 ≤ i ≤ ` − 1, at some time τ ′ ≥ τ + i, ei is

the oldest item of B in the buffer of alg, then, with

a single colour switch that occurs at time τ ′, alg can

output all the items of B not output before τ ′.

Proof Recall that time corresponds to the index of the

current request. That is, the time advances when the

current request enters the buffer, and serving items does

not affect the time.

At time τ ′, if e`−1 is in the buffer of alg, then alg

can clearly output all the items of B not yet output

with a single colour switch.

Consider the case when e`−1 is not in the buffer of

alg at time τ ′. In this case, opt is still outputting B

at time τ ′. At time τ , opt has m items of colour c in its

buffer for some m ∈ {1, . . . , ` − 1}. Thus, optB has a

c-buffer of size m. Denote the set of items not of colour

c that arrive in the time interval [τ+1, τ ′] by Y , and the

set of items of colour c that arrive in the time interval

[τ + 1, τ ′] by C. Note that

|C| = τ ′ − τ − |Y | ≥ i− |Y | . (1)

The items of |Y | are stored by opt (and optB) in the

buffer. Hence, by the time τ ′, optB has m − |Y | free

slots in its c-buffer.

Algorithm alg switches to colour c at time τ ′. It

has already read all the items of Y (the buffer may still

contain some of the items of Y) and read m+ |C| items

of B. Since alg no longer has the items e0, . . . , ei−1
in its buffer at time τ ′, alg has m + |C| − i items of

colour c in its buffer at time τ ′ and algB has a c-

buffer of size m + |C| − i ≥ m − |Y | (from (1)), which

is not smaller than the free space of optB at time τ ′.

Therefore, algB will read the input at least as far as

optB and, in particular, alg will output colour block

B completely. ut

3 1.5-Competitive Algorithm with Two Bits of

Advice per Request

In this section, we present an algorithm with a com-

petitive ratio of exactly 1.5 and uses two bits of advice

per request. The advice received with each item of the

input indicates the manner in which the item is served

by a lazy optimal algorithm.

3.1 Definition of the Advice and the Algorithm

The Advice. Each item e ∈ σ is assigned a type, denoted

by te. The three possible values for te are hold, list,

and comp. For an item e ∈ σ, the two advice bits cor-

responding to e encode the value of te. The sequence of

the item types te for all the elements e ∈ σ constructed

as described below will be denoted by T2bl(σ).

The sequence T2bl(σ) of types is defined based on an

arbitrary lazy optimum opt in the following manner.

For each e ∈ σ, consider the colour block B of opt that

contains e (see Figure 1). Let f be the youngest item in

B that was in the buffer of opt at the time when opt

began serving B. We set te to

comp if e is the last (youngest) item of B; B is then

considered to be complete,

hold if e is older than f , i.e., if opt will only start

serving B after at least one more item of B has

arrived,

list for all other items, i.e., e is not older than f and

not the youngest item of B.

Reordering Buffer Management with Advice 7

comp

e

e

list will enter the buffer
after opt serves e0

e0

e0

hold will enter the buffer
before opt serves e0

e f

f

list

e0

list

e

Fig. 1 An illustration of a colour block B and the three pos-
sible types of items as based on an arbitrary lazy opt. Let e0
be the oldest item in B and let f be the youngest item in B

that was in the buffer at the time that opt began serving B.
Top-left: item e is assigned type comp since e is the youngest
item of B. Top-right: item e is assigned type hold since e is
older than f . Bottom-left: item e is assigned list since e = f .
Bottom-right: item e is assigned list since e is younger than
f and e is not the youngest item of B. The list type indicates
that opt starts serving this colour block before all items have
been read into the buffer; the remaining items enter the buffer
while the colour block is being served (and while other items
of the colour block are being output).

From the definition of the advice, we get the follow-

ing observation that each colour block of opt contains

0 or more hold items followed by 0 or more list items

followed by a comp item.

Observation 2 The string produced by the concatena-

tion of types of the items in a colour block when ordered

from oldest to youngest forms an expression in the lan-

guage defined by the regular expression

hold∗list∗comp .

We can now define the notion of the type of a colour

block at time τ . Contrary to an item type that is fixed,

the type of a colour block changes over time depending

on the youngest item of the colour block currently in

the buffer of a given algorithm. At time τ , let e be the

youngest item of a colour block B in the buffer. The

type of B, denoted by tB(τ), is te. Colour blocks of

type list and comp are ranked based on the age of

their items. At time τ , let two colour blocks, B1 and

B2, be of the same type t. Let rB1 be the oldest item

of type t in B1, and let rB2 be the oldest item of type t

in B2. (Note that rB1
and rB2

may have already been

output at time τ .) We say that B1 is older than B2 if

rB1 is older than rB2 and B1 is younger than B2 if rB1

is younger than rB2
.

The Algorithm 2 bit lazy (2bl). 2bl is a lazy algo-

rithm that works in the following manner. At a time

t, if the buffer is not full, the current request, rt, is

brought into the buffer. If the buffer is full and con-

tains an item with the same colour as the active colour

c, then the oldest item of colour c is output. Otherwise,

the buffer is full and there are no items with the same

colour as the active colour. At this point, the algorithm

will perform a colour switch.

In order to choose the next colour to use, we need

to define the notion of an advice block.

Definition 6 Let στ = {r1, . . . , rτ−1} ⊆ σ be the pre-

fix of the input sequence which has entered the buffer

until time τ . An advice block A is a maximal subse-

quence of items from στ such that (i) all elements in A

have the same colour c, (ii) for i < j < `, if ri, r` ∈ A
and c(rj) = c, then rj ∈ A, (iii) if r ∈ A and tr = comp,

then r is the last item in A.

Note that the advice blocks are pairwise disjoint,

and for the type sequence T2bl(σ) each advice block

corresponds to a different colour block of opt. That

is, an advice block B consists of all elements of a cor-

responding colour block Bopt of opt which have been

read from the input sequence so far (i.e., which are con-

tained in {r1, . . . , rτ−1}).
We say that an advice block B is in the buffer at

some time τ , if there is an item e ∈ B that is in the

buffer at the beginning of time step τ . The type and

the age of an advice block at a given time are defined

in the same manner as the type of a colour block at a

given time.

At each time step τ , the next colour is chosen based

on the advice blocks in the buffer of 2bl, according to

the following rules.

1. If there is an advice block B with type comp, then

switch to the colour of the oldest comp advice block.

2. Else, if there is an advice block B with type list and

containing at least two items of type list, switch to

the colour of B.

3. Else, switch to the colour of the advice block B with

type list that has maximum cardinality. (Ties are
broken by choosing the colour of the oldest advice

block.)

3.2 The Analysis

The next two lemmas show that the algorithm 2bl is

well defined for any request sequence, and it will be able

to output all the items.

Lemma 2 Whenever the buffer of 2bl is full, it con-

tains an item of type list or comp.

Proof If an item of some advice blockB is of type hold,

then another item of the advice block B will arrive be-

fore opt starts to serve Bopt.

Assume for the sake of contradiction that, at some

time τ , the buffer of 2bl is full of items of type hold. By

definition, opt does not serve any of the colour blocks

of these items until after time τ . This means that opt

8 Anna Adamaszek et al.

also has all of these items in its buffer at time τ . This is

a contradiction, as opt has to remove an item at time

τ and must be serving some colour block. ut

Lemma 3 At time n + 1, the buffer of 2bl contains

only advice blocks of type comp.

Proof At time n + 1, all the items have entered the

buffer and, by the definition of the advice, each advice

block in the buffer will be terminated by a comp item.

ut

For an advice block B, we denote by Bopt the cor-

responding colour block of opt. Based on the order

of precedence for the colour switches of 2bl, the first

priority are advice blocks of type comp. By the defi-

nition of the advice, for such an advice block B, the

youngest item of the colour block Bopt is already in the

buffer, and all the items of Bopt that have not yet been

output can be output on a single colour switch. The

second priority are advice blocks of type list such that

at least two list items have entered the buffer (and

possibly have been output). The following two lemmas

show that there can be at most one such advice block

B in the buffer of 2bl, and that the remaining items of

Bopt can be output on a single colour switch.

Lemma 4 At any time, the buffer of 2bl contains at

most one advice block B of type list containing at least

two items of type list.

Proof By the definition of the advice and 2bl, if, at

some time τ , the buffer of 2bl contains an advice block

B with two items of type list and no comp item, this

indicates that opt is serving Bopt at time τ . Since opt

can only serve one colour block at a time, there cannot

be two such advice blocks at any time τ . ut

Lemma 5 At a time τ ′, let B be an advice block of type

list containing at least two items of type list. If 2bl

switches to the colour of B at time τ ′, 2bl can serve

all the items of Bopt that have not yet been output with

a single colour switch.

Proof Let c be the colour of advice block B. By the

definition of type list and Lemma 4, opt starts to serve

Bopt at some time τ < τ ′ and is still serving Bopt at

τ ′. By the definition of the advice, all the advice blocks

corresponding to the colour blocks that opt serves prior

to τ must have type comp at time τ and, therefore, by

the definition of the algorithm, 2bl must have served

those advice blocks by time τ ′, as otherwise it would

not switch to colour c at the τ ′.

Hence, at time τ ′, all the items that are not of colour

c in the buffer of 2bl are also in the buffer of opt. We

conclude that the c-buffer of optBopt is no larger than

the c-buffer of 2blB at time τ ′. This implies that 2blB
(and 2bl) reads the input at least as far as optBopt

and, in particular, completes the colour block Bopt. ut

The third priority are advice blocks that are of type

list with only one list item. 2bl will only switch to

the colour of such an advice block if its buffer does not

contain advice blocks of a higher priority, which implies

that the buffer of 2bl only contains advice blocks of

the third priority or hold advice blocks. The following

lemma shows that in this case, after switching to the

colour of the largest-cardinality list advice block B,

either all items ofBopt will be output, or an item of type

list or comp of another list advice block B′ in the

buffer will enter the buffer, ensuring a higher priority

advice block for the subsequent colour switch.

Lemma 6 Let Blist be the set of list advice blocks in

the buffer of 2bl at a time τ , and assume that the buffer

of 2bl contains no advice blocks of type comp or with

at least two list items. Then switching to the colour of

the largest advice block B∗ ∈ Blist at time τ guarantees

that either (i) all the items of B∗opt will be output before

the next colour switch, or (ii) a list or comp item from

another advice block B′ ∈ Blist enters the buffer while

2bl is outputting the items of B∗opt.

Proof At time τ , opt starts or continues serving some

colour block Bopt (where the corresponding advice

block B ∈ Blist) of colour c. All items from the buffer

of 2bl which are not of colour c are also in the buffer of

opt at time τ . Hence, if 2bl switches to B at time τ , it

will serve the entire colour block Bopt. If 2bl switches

to B∗ 6= B of colour c∗ 6= c, then the c∗-buffer of 2blB∗

is at least as large as the c-buffer of optBopt
as, by def-

inition, |B∗| ≥ |B|. Hence, a new item e with type list

or comp of colour c must arrive before the c∗-buffer is

full, otherwise opt could not serve e together with the

rest of the colour block Bopt. Thus, after serving B∗,

2bl will have an advice block with at least two items

of type list or with an item of type comp in its buffer.

ut

From Lemma 5 and Lemma 6 we can observe that

every time 2bl has to perform two colour switches to

serve a colour block Bopt (containing items of type

list), there is another colour block that is output by

2bl with a single colour switch. That allows us to prove

the following theorem.

Theorem 2 The algorithm 2bl is 1.5-competitive.

Proof Let bcomp be the set of colour blocks of opt with-

out a list item. By the definition of the algorithm and

the advice, 2bl will perform |bcomp| colour switches to

serve those colour blocks.

Reordering Buffer Management with Advice 9

Consider the colour blocks of opt that contain a

list item. Let blist1 be the set of colour blocks of opt

that 2bl serves with a single colour switch, and let blist2

be the set of colour blocks of opt that 2bl serves with

more than a single colour switch. Each colour block

Bopt in blist2 will be served with two colour switches by

2bl. The first colour switch occurs after the first list

item of Bopt enters the buffer of 2bl and the second

colour switch occurs after the second list item of Bopt

enters the buffer of 2bl. By Lemma 5, the items of

Bopt not yet output will be output by the second colour

switch by 2bl. Hence, for 2bl, the colour blocks in blist2

are output with 2|blist2 | colour switches.

From the definition of the advice, the algorithm and

Lemma 6, the blist2 colour blocks can only occur when

the buffer contains only hold advice blocks and list

advice blocks with at most a single list item in the

buffer. In such a case, a colour switch is made to the

largest advice block B of type list. By Lemma 6, af-

ter serving B, when all the items of Bopt are not out-

put, either a list or a comp type item e from another

list advice block B′ enters the buffer of 2bl. If te is

comp, all the items of B′opt are in the buffer and 2bl

will output all of them on the next colour switch to

c(e). If te is list, then 2bl will output all the items

of colour block B′opt on the next colour switch to c(e)

by Lemma 5. Therefore, for every colour block in blist2 ,

there is a colour block that 2bl will serve in its entirety

that is in blist1 which implies |blist2 | ≤ |blist1 |.
From the definition of the advice, the cost of opt is

the number of colours blocks which is |bcomp|+ |blist1 |+
|blist2 |. From this and the fact that |blist2 | ≤ |blist1 |, we

get that |blist2 | ≤ opt(σ)/2. Therefore, the number of

colour switches of performed by 2bl is |bcomp|+ |blist1 |+
2|blist2 | ≤ 3

2opt(σ). ut

In the following theorem, we complement the previ-

ous result by showing that the upper bound on 2bl is

tight.

Theorem 3 For k ≥ 3, the competitive ratio of 2bl is

at least 1.5.

Proof For a colour c, let cj denote items of colour c

requested j times in a row. For colours cx, cy, cz, let

R(cx, cy, cz) := c
b k

2 c
y , c

d k
2 e

y , c
d k

2 e
z , cx, i.e., we have k re-

quests of the colour cy, followed by dk2 e requests of cz,

followed by a single request of cx. We define an infinite

family of request sequences parameterized by p ≥ 1 as

follows. Let

Λp =
〈
c
d k

2 e
1 ,R(c1, c2, c3),

R(c3, c4, c5),

...

R(c2p−1, c2p, c2p+1)
〉
,

where each ci is a distinct colour. Note that, for

any σ ∈ Λp, the optimal cost is exactly the num-

ber of colours, i.e., opt(σ) = 2p + 1. Further, the

sequence of colour switches for an optimal algorithm

is 〈c2, c1, c4, c3, c6, . . . , c2p, c2p−1, c2p+1〉. From the con-

struction of the advice sequence, for each odd i the

dk2 e-th item of colour ci is the first one of type list,

and for each even i the bk2 c-th item of colour ci is the

first one of type list.

Initially and after completely serving every item of

a colour switch to an odd indexed colour ci, the buffer

of opt contains two advice blocks, c
d k

2 e
i+2 and c

b k
2 c

i+3 . Each

of these advice blocks has type list and contains one

element of type list.

Now, we consider how the algorithm 2bl will serve

a request sequence σ ∈ Λp. We define a phase of 2bl

to begin whenever the buffer contains c
d k

2 e
i and c

b k
2 c

i+1 ,

where i is odd. Note that the first phase beings once

the first k items enter the buffer.

For each phase, by the definition of the algorithm,

2bl will first serve the dk2 e items of the colour ci. Then,

the buffer is filled with k items of the colour ci+1 and

2bl serves ci+1. After removing all the items of colour

ci+1, the contents of the buffer of 2bl is c
d k

2 e
i+2 , ci and, if

it is not the last phase, c
b k

2 c−1
i+3 . By definition, 2bl serves

ci which is of type comp and the buffer contains c
d k

2 e
i+2

and, if it is not the last phase, c
b k

2 c
i+3 . The next phase

starts. We have shown that during each phase, except

of the last one, 2bl performed three colour changes. In

the last phase, the algorithm performs one more colour

switch to serve the items of colour c2p+1. Overall, 2bl

needs 3p+ 1 colour switches. ut

4 An Optimal Algorithm with 2 + dlog ke Bits

of Advice per Request

In this section, we consider the 1.5-competitive algo-

rithm from the previous section and enhance it by giv-

ing it access to the order in which opt serves the list

colour blocks. This enables the algorithm to serve σ

with no more colour switches than opt. However, at

any given time step, there could be k − 1 other list

10 Anna Adamaszek et al.

advice blocks in the buffer. So, encoding the position of

an advice block in an ordered list of list advice blocks

may require dlog ke bits (which is actually allows one

to run the trivial algorithm with advice that indicates

the colour switch at each time step). The ordered list

of list advice blocks is called here the waiting list and

the algorithm described in the present section is called

2 bit lazy with waiting list (2bwl). In the two

subsequent sections, we will modify the advice string

of the algorithm so as to obtain a (1 + ε)-competitive

algorithm with a constant number of advice bits per re-

quest. More specifically, we will allow for a multiplica-

tive factor of ε more colour switches but generate the

item types such that the position of the list advice

blocks in the waiting list can be encoded with O(log 1
ε)

bits.

4.1 The Advice, the Waiting List and the Algorithm

The Advice. Given a request sequence σ and a fixed

lazy opt, each item e ∈ σ is assigned a type te ∈
{hold, list,comp} as defined in the previous section,

i.e., T2bwl(σ) = T2bl(σ).

Consider the advice blocks of σ as described by the

advice sequence T2bwl(σ). Each advice block B with

an item of type list is assigned a value uB that is an

integer in {0, . . . , k − 1}. The value uB is defined in

the following manner. Let e be the oldest list item

in some advice block B and let τ be the time that e

enters the buffer of 2bwl. Consider all the colour blocks

of opt that correspond to the advice blocks of type

list present in the buffer of 2bwl at time τ , and order

those colour blocks according to the order in which opt

outputs them. The value of uB is the index of Bopt in

such an ordering, where the initial index of the ordering

is 0, i.e., the colour block with the index 0 is the first

one to be output by opt.

For the sake of analysis, we define another sequence,

U2bwl(σ), to be the sequence of the values of uB or-

dered, from oldest to youngest, by the age of the oldest

list item in each advice block with an item of type list

in σ.

The Waiting List. The algorithm maintains a waiting

list of advice blocks of type list. This list contains only

advice blocks that have, at some time, type list. At

the beginning, the waiting list is empty. Whenever an

advice block B of type list appears (i.e., the first item

of type list for some advice block is read from the

input), it is inserted into the waiting list. The initial

position of the advice block on the waiting list, i.e., the

position where the advice block is inserted, is defined by

the value uB of the advice block. A value of 0 denotes

the head of the list. Note that when a new advice block

is inserted into or removed from the waiting list, the

position of the other advice blocks on the list can change

and, whenever an advice block on the waiting list is

output, that advice block is removed from the waiting

list.

The Algorithm 2 bit lazy with waiting list

(2bwl). 2bwl is a lazy algorithm that runs just as

2bl. The difference is the manner in which 2bwl will

choose the next colour for each colour switch. If there

is an advice block B with type comp in the buffer of

2bwl, then 2bwl will switch to the colour of B. Other-

wise, if there is no advice block with type comp, 2bwl

switches to the colour of the advice block B at the front

of the waiting list and removes B from the waiting list.

As can be seen from the proof of Theorem 2, 2bl

only uses more colour switches than opt if it chooses

the wrong colour block of type list to serve. The advice

of 2bwl allows it to avoid this error. Hence, 2bwl is

optimal.

5 A (1 + ε)-Competitive Algorithm with

2 + dlog ke Bits of Advice per Request

In this section, we modify the 2bwl algorithm and the

advice from the previous section and present an algo-

rithm that is (1 + ε)-competitive and uses 2 + dlog ke
bits of advice per request. This algorithm has a worse

competitive ratio than 2bwl, but, for a cost of an ad-

ditional multiplicative factor of ε colour switches, the

number of list advice blocks that are placed in the

waiting list is significantly reduced. In the next section,
we will modify the algorithm presented in this section

such that the position of the advice blocks in the wait-

ing list will be encoded in a constant number of bits

independent of k.

5.1 The Advice and the Algorithm

A New Item Type. Given a request sequence σ and a

fixed lazy opt, each item e ∈ σ is a assigned a type

te ∈ {hold, list,ready,comp}, where hold, list

and comp are defined as in Section 3. ready is a

new item type that will be used along with comp to

split some advice blocks with an item of type list into

two separate advice blocks, such that the algorithm can

force some items to be removed earlier from the buffer,

or to delay the time when an advice block with an item

of type list will be output (see below for the details).

Note that the four item types can still be encoded in

two bits.

Reordering Buffer Management with Advice 11

We extend the notion of an advice block for items

of type ready. The definition remains the same except

that the string produced by the concatenation of the

types of the items in an advice block is in the language

hold∗(list∗ ∪ ready∗)comp?. With the addition of

the type ready as detailed below, the advice blocks

are still disjoint, but there can be more advice blocks

than colour blocks of opt. Specifically, there could be

two advice blocks that are the prefix and the suffix of

a colour block of opt.

An advice block B has type ready if it contains

an item of type ready and no item of type comp. At

a time τ , for two advice blocks of type ready in the

buffer, we say that B1 is older than B2 if the oldest

ready item in B1 is older than the oldest ready item

in B2.

The Algorithm 2 bit lazy with reduced waiting

list (2brwl). 2brwl is a lazy algorithm that runs just

as 2bl and 2bwl. The difference is the manner in which

2brwl chooses the next colour for a colour switch. At

a time step τ , the next colour is chosen based on the

advice blocks in the buffer of 2brwl, according to the

following rules.

1. If there is an advice block B with type comp, then

switch to the colour of the oldest comp advice block,

2. else, if there is an advice block with type ready,

then switch to the colour of the oldest ready advice

block,

3. else, if there is an advice block with type list,

switch to the advice block B at the front of the

waiting list and remove B from the waiting list.

5.1.1 Building the Advice Sequences

The advice sequence containing the types of the items,

T2brwl(σ), and the advice sequence containing the wait-

ing list positions, U2brwl(σ), are constructed offline

and based on an arbitraryoptimal lazy solution opt

for the instance σ. The idea of the construction is

as follows. We initially assign each input item e type

te ∈ {hold, list,comp} as it is assigned for 2bl.

That is, initially, T2brwl(σ) = T2bl(σ) and U2brwl(σ) =

U2bwl(σ). Then, 2brwl is simulated on σ with the ad-

vice sequences T2brwl(σ) and U2brwl(σ). Given some

constant C (defined later), whenever the waiting list

of 2brwl contains at least C advice blocks of sizes that

differ by a factor of at most 2, these advice blocks will

be removed from the waiting list at a cost of only two

additional colour switches. This will be accomplished

by replacing list type items with type ready and

type comp in T2brwl(σ). This modification introduces

items of type ready and increases the number of ad-

vice blocks as defined by σ and T2brwl(σ) (and updates

U2brwl(σ) as advice blocks with ready items are not

put into the waiting list). The number of colour switches

performed by 2brwl increases as the number of ad-

vice blocks defined for σ by T2brwl(σ) increases, but

the number of advice blocks of similar size in the wait-

ing list at any given time will be bounded by a constant

and this will allow us, in the next section, with one more

alteration, to encode the position of the advice blocks

in the waiting list with a constant number of advice

bits.

In order to formally define the procedure of gener-

ating T2brwl(σ) and U2brwl(σ), we will first define three

procedures that are used to modify the advice data. The

input to the procedures is a complete advice block B,

i.e., the advice block defined with respect to the entire

request sequence σ and T2brwl(σ), containing at least

one item of type list.

The first procedure removes an advice block B from

the waiting list and updates the values of u′B for the

advice blocks B′ inserted behind B in the waiting list.

Procedure Remove(B)

– Remove uB from U2brwl(σ).

– For each advice block B′ that was inserted into the

waiting list, at a position behind B, after B was

inserted but prior to B being output, decrease uB′

by one.

The next procedure will split an advice block B into

two advice blocks, such that both will end with an item

of type comp, by reassigning the oldest list item to

type comp. Additionally, the other items in B with list

type are changed to ready (see Figure 2). This ensures

that neither of the new advice blocks will be placed on

the waiting list. The first advice block is called an early

block and the second advice block is called a late block.

Procedure Split(B)

– Run Remove(B).

– Reassign type comp to the first item of B which has

type list assigned.

– Reassign type ready to the remaining items of B

which have type list assigned.

Let B be an advice block that is processed by the Split

procedure that produces an early block B′ and a late

block B′′. The colour block of opt that corresponds to

B, Bopt, is the same colour block that corresponds to

both B′ and B′′, i.e. Bopt = B′opt = B′′opt.

12 Anna Adamaszek et al.

hold hold hold list list list comp

hold hold hold comp ready ready comp

Fig. 2 An example of the procedure Split(B) as applied to
an advice block B (top) of items with types hold, list and
comp. B is split into two new advice blocks (bottom). The
early block (bottom left) is made up of the hold items and
the first list item of B which is changed to comp. The late
block (bottom right) has the rest of the items of B with all
the list items changed to ready.

The procedure Split(B) makes 2brwl output the

items from the early block of B before they are output

by opt, generating free space in the buffer of 2brwl.

This allows some advice blocks to stay in the buffer until

the next item of the advice block is read from the input,

and only then to be output by 2brwl. These are the

advice blocks for which we run procedure Postpone(B)

(see Figure 3).

Procedure Postpone(B)

– Run Remove(B).

– Reassign type hold to the first item of B which has

type list assigned.

– Reassign type ready to the remaining items of B

which have type list assigned.

Advice blocks processed in this way are called postponed

blocks. Note that no additional advice blocks are pro-

duced by the procedure Postpone. For an advice block

B that is processed by the Postpone procedure, B re-

mains the only advice block that corresponds to Bopt.

An advice block B that is processed using the

Split(B) or Postpone(B) procedure will never be in-

serted into the waiting list of 2brwl. This is the reason

why the procedure Remove(B) is run at the beginning

of both procedures Split(B) and Postpone(B).

hold hold hold list list list comp

hold hold hold hold ready ready comp

Fig. 3 An example of the procedure Postpone(B) as applied
to an advice block B (top) of items with types hold, list and
comp. The first list item of B is changed to hold and the
remaining list items are changed to ready as shown in the
postponed block (bottom).

The goal of our algorithm is to ensure that there are

not too many advice blocks of similar size in the waiting

list. To formalize the notion of similar size, we define

the class of a list advice block. In the definition, h(B)

is the number of items of B in the buffer of opt when

opt starts serving Bopt. That is, we count the first list

item and all the hold items of B. Note that for an early

block B′ resulting from Split(B) the number of items

in B′ is h(B).

Definition 7 The class of an advice block B of type

list is the number blog h(B)c, where h(B) is the num-

ber of items of type hold in B increased by one.

From the definition of a class of a list advice block

B, we have that, for a class i, h(B) ∈ {2i, . . . , 2i+1−1}.
Therefore, for a buffer of size k, there are blog kc+1 pos-

sible classes, i.e., the classes correspond to the integers

from 0 to blog kc.
We are now ready to formally define T2brwl(σ)

and U2brwl(σ). Initially, T2brwl(σ) = T2bl(σ) and

U2brwl(σ) = U2bwl(σ). Simulate 2brwl on σ with

T2brwl(σ) and U2brwl(σ). Let nτi be the number of ad-

vice blocks of class i in the waiting list at time τ . Let

(τ∗, i∗) be an arbitrary pair such that

(τ∗, i∗) ∈ arg max
τ∈{1,n},i∈{0,blog kc}

nτi .

If nτ
∗

i∗ ≥ C, let B1 and B2 be the two last advice blocks

of class i∗ in the waiting list at time τ∗. We perform

the following two operations.

– Run Split(B1) and Split(B2).

– For all remaining advice blocks B′ of class i∗ in the

waiting list at time τ∗, run Postpone(B′).

By running these procedures, the advice sequences are

updated so that 2brwl will not insert any of these nτ
∗

i∗

advice blocks into the waiting list. This process is re-

peated using the updated advice sequences until, for all

1 ≤ τ ≤ n and 0 ≤ i ≤ blog kc, we get nτi < C.

5.2 The Analysis

For the analysis, unless explicitly stated, we will al-

ways consider the advice blocks as defined with re-

spect to the entire request sequence, σ, and their types,

T2brwl(σ). The definition of 2brwl and the two follow-

ing lemmas show that 2brwl is well defined for any

request sequence. The proof of Lemma 7 follows that

of Lemma 2 for the items of type hold in both T2bl(σ)

and T2brwl(σ). Additionally, we have to consider the

items of type hold in T2brwl(σ) created by the pro-

cedure Postpone(B), i.e., items that are type list in

T2bl(σ).

Reordering Buffer Management with Advice 13

Lemma 7 Whenever 2brwl has a full buffer, it con-

tains a list, ready or comp type item.

Proof Assume for the sake of contradiction that at time

τ the buffer of 2brwl is full of items of type hold.

Due to Lemma 2 it cannot happen that all these

elements had type hold before we started running the

Postpone procedure.

Now consider the case that the buffer contains

some hold items that were originally of type list (in

T2bl(σ)), then the procedure Postpone has been run on

the advice blocks containing these items, reassigning

the type of the items from list to hold and creating a

postponed block. If, at time τ , opt has already finished

outputting the items of any postponed block contained

in the buffer of 2brwl, the item of type comp from the

postponed block would have been already read from the

input and it would be in the buffer of 2brwl. This con-

tradicts the fact that the buffer is full of hold items.

Hence, at time τ , opt is outputting the items of one

of the postponed blocks. Let B be the postponed block

being output. Note that all k−h(B) items in the buffer

of 2brwl of type hold, which are not in B, are still in

the buffer of opt. From the definition of T2brwl(σ), B

becomes postponed after two other advice blocks from

the same class, B1 and B2, are split. B1 and B2 are

two advice blocks output by opt later than B, that

are on the waiting list at the same time as B. Since

B, B1 and B2 are in the same class, h(B), h(B1) and

h(B2) ∈ {2i, . . . , 2i+1 − 1} and, hence, the two early

blocks obtained from B1 and B2 are of size greater than

h(B)/2 each. At time τ , B1 and B2 are still in the buffer

of opt, since, by definition, they are output by opt af-

ter B. 2brwl must have output the two early blocks B1

and B2 at time τ , otherwise 2brwl would have items

not of type hold in its buffer. This is a contradiction

as opt does not have enough buffer space to keep at

least k − h(B) + 2(h(B)/2 + 1/2) = k + 1 items in the

buffer. ut

The proof of the following lemma is analogous to

that of Lemma 3.

Lemma 8 At time n+1, the buffer of 2brwl contains

only advice blocks of type comp.

Lemma 7 leaves open the possibility that 2brwl

may be able to serve only part of an advice block. This

could only happen if all the items of the entire advice

block do not enter the buffer while 2brwl is serving its

colour. In such a case, 2brwl would have to return to

this colour several times, and its cost would be higher

than the number of advice blocks given by the advice

sequence T2brwl(σ). We will show that this does not

happen, and 2brwl always outputs the complete ad-

vice blocks as defined for the entire request sequence

σ and T2brwl(σ). Then, we will bound from above the

competitive ratio of 2brwl.

First, we present the following technical lemma on

the item types contained in an advice block of T2brwl(σ)

that shows that each advice block is composed of 0 or

more hold items followed by 0 or more list or ready

items followed by a comp item.

Lemma 9 In the advice sequence T2brwl(σ), the string

produced by the concatenation of types of the items in

an advice block when ordered from oldest to youngest

forms an expression in the language defined by the reg-

ular expression

hold∗(list∗ ∪ ready∗)comp .

Proof Initially, in the definition of T2brwl(σ), T2brwl(σ)

= T2bl(σ). So, from Observation 2, initially, all

the advice blocks in T2brwl(σ) are of the form

hold∗list∗comp. In the process of generating the fi-

nal T2brwl(σ), only the advice blocks of the required

form are generated through the procedures Split and

Postpone. Let B be an advice block of the form

hold∗list∗comp. Applying the procedure Split(B)

generates an early block of the form hold∗comp and a

late block of the form ready∗comp (see Figure 2). Ap-

plying the procedure Postpone(B) generates an advice

block of the form hold∗ready∗comp (see Figure 3).

ut

Now, we consider all the types of advice blocks

which 2brwl starts outputting before they become

complete, and we show that opt cannot keep all the
items of such advice blocks longer in the buffer.

Lemma 10 When the algorithm 2brwl starts out-

putting an advice block, the complete advice block will

be output with no additional colour switches.

Proof The only advice blocks which 2brwl will start

outputting before reading all the items of the advice

block from the input are ready blocks and list blocks.

All the ready blocks are either postponed blocks from

the Postpone procedure or late blocks from the Split

procedure.

First, consider the postponed blocks of type ready.

From the construction of T2brwl(σ), we know that

2brwl starts outputting a postponed block B later

than opt. That is, opt begins outputting Bopt strictly

before reading the item f that follows the first item e

of type list. The advice for e gets modified to hold

in the Postpone procedure and, therefore, 2brwl only

begins outputting B after reading the item f of type

14 Anna Adamaszek et al.

ready into the buffer. Also, we know that the oldest

item of Bopt is in the buffer of 2brwl at that time.

Hence, from Lemma 1, 2brwl can finish outputting all

the items of the block with a single colour switch.

Now, consider the late blocks of type ready. These

blocks were produced by the Split procedure. Let τ ′ be

the time when 2brwl starts outputting a late ready

block B. From the definition of the Split procedure, the

first ready item of a late block B is the second list

item of the original advice block. Let τ be the time

when opt starts outputting Bopt. By the definition of

the advice we have τ < τ ′ and, since the comp item ofB

is not in the buffer at time τ ′, opt is still outputting the

items of Bopt at time τ ′. The buffer of 2brwl at time

τ ′ only contains list advice blocks and hold advice

blocks that contain items that are served by opt after

time τ ′. The early block that corresponds to Bopt has

been output by 2brwl before time τ ′. Therefore, τ ′ ≥
τ + i, where i is the number of items in the early block

that corresponds to Bopt. By Lemma 1, 2brwl can

output all the items of B without a colour change.

Finally, consider the advice blocks of type list. Let

τ ′ be the time when 2brwl starts outputting an advice

block B of type list. By the definition of the advice,

the advice block B was not processed by the procedures

Split or Postpone and is, therefore, an advice block as

defined for σ, using T2bl(σ). Also, the oldest item of

Bopt is in the buffer of 2brwl at the time that 2brwl

begins outputting B. By showing that opt starts out-

putting Bopt at some time τ ≤ τ ′, the claim follows

from Lemma 1.

For the sake of contradiction, assume that opt

starts outputting Bopt at a time τ > τ ′. As B has

type list at time τ ′, we get that at time τ ′ there are

no advice blocks of type ready or comp in the buffer

of 2brwl. All the advice blocks in the buffer of 2brwl

at time τ ′ are

(1) original advice blocks of type hold as defined for

σ, using T2bl(σ),

(2) original advice blocks of type list as defined for σ,

using T2bl(σ),

(3) postponed blocks of type hold.

By the definition of the advice, opt still has the items of

the advice blocks of (1) in the buffer at time τ ′. The ad-

vice blocks of (2) are in the waiting list behind B. This

implies that opt still has the items of the advice blocks

of (2) in its buffer at time τ ′. The advice blocks of (3)

are postponed blocks and because of the reassignment

of the type in the Postpone procedure, opt can be in

the process of outputting the first of them at time τ ′. In

this case, opt would have the items of two early blocks

of size h(B1) and h(B2) in its buffer, where B1 and B2

are in the same class as B. These two early blocks have

a total size greater than h(B), since h(B), h(B1) and

h(B2) ∈ {2i, . . . , 2i+1 − 1}, and the early blocks have

already been output by 2brwl at time τ ′. This is a con-

tradiction, as opt does not have enough buffer space to

keep at least k−h(B) + 2(h(B)/2 + 1/2) = k+ 1 items

in the buffer at time τ ′. ut

In the remaining part of this section, we will bound

from above the competitive ratio of 2brwl. For this,

we will need a lower bound on the cost of opt, as well

as an upper bound on the cost of 2brwl. From the

construction of the advice sequence, we have that the

number of advice blocks defined for σ by T2brwl(σ) is

at least the number of advice blocks defined for σ by

T2bl(σ). We get the following two observations.

Observation 3 The cost of 2brwl is at most the

number of advice blocks defined with respect to σ and

T2brwl(σ).

Observation 4 The cost of opt is at least the num-

ber of non-late blocks defined with respect to σ and

T2brwl(σ).

Therefore, to bound the competitive ratio, it is

enough to bound the number of late blocks defined with

respect to σ and T2brwl(σ), as compared to the number

of advice blocks of other types. Let late2brwl denote

the set of late blocks created by generating T2brwl(σ)

and U2brwl(σ).

Lemma 11 Let postponed and early denote

the sets of postponed and early blocks created

when constructing T2brwl(σ). Then, |late2brwl| ≤
2
C (|postponed|+ |early|) ≤ 2

C (opt(σ)).

Proof Advice blocks from the set late2brwl are a result

of the Split procedure. The Split procedure is run on

two advice blocks out of a set of at least C advice blocks.

This procedure produces a total of two early blocks and

two late blocks. The remaining advice blocks of which

there are at least C − 2 become postponed blocks. The

first inequality follows from the fact there are at least

C early and postponed blocks for every two late blocks,

and the second inequality follows from Observation 4.

ut

By setting C = d2/εe and applying Lemma 11, we

get the following theorem.

Theorem 4 For any ε > 0 and C = d2/εe, 2brwl is

a (1+ε)-competitive algorithm for the reordering buffer

management problem.

Reordering Buffer Management with Advice 15

6 A (1 + ε)-Competitive Algorithm with

O(log(1/ε)) Bits of Advice per Request

In this section, we modify the 2brwl algorithm and

the advice in such a way so as to be able to encode

the position of the list blocks in the waiting list, using

only a constant number of bits of advice per request.

The resulting algorithm is the main result of the paper.

The idea of the final modification is the following.

Let B be an advice block containing items of type list,

and let τ be the time when the first list item of B

enters the buffer of the algorithm. It is at time τ that

the algorithm needs to know the value of uB , and there

are at least h(B) items of B in the buffer at this time.

Recall that for an advice block B with an item of type

list, h(B) is defined to be the number of hold items of

B plus one. This corresponds to the number of items of

B in the buffer at time τ . Let D be a constant which will

be defined later. If uB < Dh(B), then uB can be encoded

in base D with at most h(B) digits. These digits can

be encoded in the advice, each digit for one of the first

h(B) items of the advice block B. If uB ≥ Dh(B), then

uB cannot be encoded in base D with h(B) digits. In

this case, the advice block B will be removed from the

waiting list by splitting B into an early and late block,

using the Split procedure defined previously. The idea

is that the latter case will not happen too often, as

the number of list advice blocks has been significantly

reduced going from 2bwl to 2brwl.

6.1 The Advice and the Algorithm

The Advice. Given a request sequence σ and a fixed
lazy opt, each item e ∈ σ is assigned a type te ∈
{hold, list,ready,comp}, where hold, list, ready

and comp are defined as in Section 5.1.

In addition, each item e will have a value ve ∈
{0, . . . , D − 1}. For each advice block B with items of

type list, the advice for the first h(B) items of B con-

tains a digit of uB in base D, using dlogDe bits. For all

other items, ve is unused and set to 0.

The Algorithm constant advice with waiting list

(cawl). cawl is defined in essentially the same man-

ner as the algorithm 2brwl. The only difference is the

manner in which cawl determines the position in the

waiting list for the list advice blocks. For an advice

block B of type list, when the first list item enters

the buffer it is placed in the waiting list. The position

in which to insert B is determined by the ve values of

the first h(B) items of B. Each ve represents a digit of a

base D number that is the position of B in the waiting

list.

6.1.1 Building the Final Advice Sequences

We construct the advice sequence containing the types

of the items, Tcawl(σ), and the advice sequence con-

taining the waiting list positions, Ucawl(σ), in an of-

fline manner, as follows. Initially, Tcawl(σ) = T2brwl(σ),

Ucawl(σ) = U2brwl(σ) and τ = 0. In a simulation

of cawl using the advice sequences Tcawl(σ) and

Ucawl(σ), let an advice block B be the first advice block

to change to type list after time τ . If uB < Dh(B), then

set the values of ve appropriately for each of the first

h(B) items of B. Otherwise, uB ≥ Dh(B). In this case,

run Split(B). This creates an early block and a late

block, and removes B from the waiting list. Set τ to

the time step when the first list item of B entered the

buffer in the current simulation and repeat this proce-

dure, using the updated advice sequences of Tcawl(σ)

and Ucawl(σ).

6.2 The Analysis

For the analysis, unless explicitly stated, we will always

consider the advice blocks as defined with respect to the

entire request sequence, σ, and their types, Tcawl(σ).

cawl is defined essentially as 2brwl, the only differ-

ence in the algorithm is the encoding of the positions

of list advice blocks in the waiting list. The differ-

ence in the advice sequence is that some of the advice

blocks with an item of type list as defined for σ by

T2brwl(σ) have been split into early and late blocks by

the Split procedure when defining Tcawl(σ). Lemmas 7

to 10 from Section 5.2 hold for cawl as they hold for

2brwl because in the proofs we never used the fact

that the Split procedure is only performed under the

special circumstances of 2brwl.

As with 2brwl, in order to bound from above the

competitive ratio, we need to bound from above the

number of late blocks of T2brwl(σ) as compared to the

number of advice blocks of other types. Lemma 11

bounds from above the number of late blocks created by

generating T2brwl(σ) and U2brwl(σ) which are initially

equal to Tcawl(σ) and Ucawl(σ). Let latecawl denote

the set of late blocks created by generating Tcawl(σ)

and Ucawl(σ) that are not in the set late2brwl.

Lemma 12 Let listed denote the set of advice blocks

which contain items of type list as defined with respect

to σ and T2brwl(σ). Then, |latecawl| ≤ C
D−1 |listed|.

Proof Let B′ ∈ latecawl be a late block produced by

applying Split(B) to some list advice block B when

generating Tcawl(σ) and Ucawl(σ). This only occurs in

the case when uB ≥ Dh(B) ≥ D2i , where i is the class

of B.

16 Anna Adamaszek et al.

Let B(B) be the set of advice blocks in the waiting

list at a position before uB when the first list item

of B enters the buffer. Therefore, |B(B)| = uB and

each advice block from the set B(B) belongs to the set

listed.

Let B0 be an advice block in listed, and let τ be the

time step when the first item of B0 was output and B0

was removed from the waiting list. For any advice block

B′ ∈ latecawl such that B0 ∈ B(B), the advice block

B must have been in the waiting list at time τ . From the

construction of T2brwl(σ) and U2brwl(σ), the number of

advice blocks of class i which are in the waiting list at

time τ is less than C. So, |B of class i : B0 ∈ B(B)| <
C.

Now, for each advice block B′ ∈ latecawl, we

charge a cost of 1
uB
≤ 1

D2i
to the first uB advice blocks

from the set B(B). The total cost charged to all advice

blocks in listed equals |latecawl|. Each advice block

in listed is charged a total cost less than

blog kc∑
i=0

C

D2i
≤ C

D − 1
.

Therefore, |listed| · C
D−1 ≥ |latecawl|. ut

Combining Lemma 11 and Lemma 12, and setting

C = d2/εe and D = dC/εe+ 1 gives us the main upper

bound.

Theorem 5 For any ε > 0, C = d2/εe and D =

dC/εe + 1, cawl is a (1 + ε)-competitive algorithm

for the reordering buffer management problem, using

O(log(1/ε)) bits of advice per input item.

Proof Let P = |postponed|, E = |early| and L =

|listed|. From Lemma 11 and Lemma 12, we get that

|late2brwl|+|latecawl|

≤ 2

C
(P + E) +

C

D − 1
L

≤ max

{
2

C
,

C

D − 1

}
· (P + E + L)

≤ max

{
2

C
,

C

D − 1

}
· opt(σ)

= εopt(σ) ,

where the third inequality follows from Observation 4

and the fact that the sets postponed, early, and

listed are disjoint. That is, opt(σ) can be bounded

from below by the non-late blocks defined with respect

to σ and T2brwl(σ). These non-late blocks include the

advice blocks from the disjoint sets postponed, early

and listed.

Overall, we have that alg(σ) ≤ (1 + ε)opt(σ).

The number of advice bits per input item e is 2 bits

to encode the item type (te) and dlogDe bits to encode

in binary a digit in base D, encoding the position of

an advice block in the waiting list (ve). In total, that is

2 + dlogDe = O(log(1/ε)) bits of advice per item. ut

Notice that the algorithm from Theorem 5 is strictly

competitive, i.e., the additive constant in the definition

of the competitive ratio is 0.

7 A Lower Bound on the Advice Required for a

Competitive Ratio Close to 1

In this section, we show that Ω(log k) bits of advice

per request are needed for a deterministic algorithm

to be 1-competitive. More specifically, a determinis-

tic algorithm alg that uses o(log k) bits of advice per

request cannot have a competitive ratio better than

1 + 1/(2k)− 1/(2k · k!).

We first present an infinite family Ψk of request se-

quences, parameterized by an integer k ≥ 2, where ev-

ery request sequence σk ∈ Ψk will consist of some p

phases. Then, we define a class of tidy algorithms for

serving requests from Ψk, and show that any online

algorithm with a buffer of size k can be converted to

an online tidy algorithm without increasing the cost of

processing any σk ∈ Ψk. Next, we present a subclass

of tidy algorithms called predetermined tidy algorithms

and show that for any a tidy algorithm algktidy using a

buffer of size k there is a predetermined tidy algorithm

algkpta using a buffer of the same size, which serves op-

timally at least as many phases of any sequence σk ∈ Ψk
as algktidy. Finally, we are able to reduce the q-SGKH

problem (see Section 2.2) to the reordering buffer man-

agement problem with a buffer of size k, using a pre-

determined tidy algorithm and the family of request

sequences Ψk. The lower bound follows from this re-

duction and Theorem 1 from [9].

Throughout this section, we assume without loss of

generality that the algorithms considered are lazy. Also,

the buffer size k is assumed to be at least 2.

7.1 The Family of Request Sequences Ψk

We first present an infinite family Ψk =
{
σkp,π

}
of re-

quest sequences, parameterized by an integer k ≥ 2.

Every request sequence σkp,π ∈ Ψk is parameterized by

a positive even integer p and a family of p permuta-

tions of a k-element set π = {π1, π2, . . . , πp}, where

each permutation πi with an even index i is an identity

permutation. The request sequence will be composed of

p+ 1 phases, numbered from 0 to p. Let c1, . . . , cpk be

Reordering Buffer Management with Advice 17

distinct colours. The request sequence σ = σkp,π ∈ Ψk
consists of the requests of the following colours, where

the i-th line corresponds to the phase number i− 1.

Cσ =
〈
c1, c2, . . . , ck,

π1(c1), ck+1, π1(c2), ck+2, . . . , π1(ck), c2k,

π2(ck+1), c2k+1, . . . , π2(c2k), c3k,

...

πp−1(c(p−2)k+1), c(p−1)k+1, . . . , πp−1(c(p−1)k), cpk,

πp(c(p−1)k+1), πp(c(p−1)k+2), . . . , πp(cpk)
〉
,

Note that |σ| = |Cσ| = 2pk. As a slight abuse of no-

tation, for a colour c, when c clearly is a colour at a

specific index j in Cσ, we will use r(c) to indicate rj in

σ.

A colour is new on its first occurrence in Cσ. For a

phase i ≤ p, let Ki =
〈
c(i−1)k+1, . . . , cik

〉
be a sequence

the k colours which appear for the first time in phase

i− 1. Each permutation πi is a permutation of Ki.
The request sequence σ consists of p + 1 phases.

The initial phase, phase 0, consists of k requests, each

to a distinct colour from K1. Each i-th phase, where

1 ≤ i ≤ p − 1, alternates the k items of Ki with k

new items of Ki+1. For an odd phase i, the k items of

Ki are ordered according some permutation πi. For an

even phase i, the k items of Ki are ordered according to

the identity permutation, i.e., they appear in the same

order as in the previous phase. The final phase, phase

p, consists of one request to each of the colours in Kp.
The identity permutation πi for the even phases i

is used to ensure that, after reading the items from the

first i phases into the buffer, for even i, the buffer of any

tidy algorithm (defined below) will consist exactly of

the elements with colours Ki. This allows us to consider

pairs of consecutive even and odd phases separately,

when constructing the lower bound.

In the following lemma, we show that at any time

when a current request exists and there are no items of

the current service colour in the buffer, an optimal algo-

rithm must switch to the colour of the current request,

i.e., the items are served in exactly the same order as

they appear in the permutations πi.

Lemma 13 Let σ = σkp,π ∈ Ψk be a request sequence,

where π = {π1, π2, . . . , πp}. Let off be an optimal of-

fline algorithm with a buffer of size k for σ. Then, for

each 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ k, the ((i− 1)k + j)-th

colour switch of off must be to the colour πi(c(i−1)k+j).

Proof Let off be an algorithm with a buffer of size k

for the sequence σ, such that for each 1 ≤ i ≤ p and

1 ≤ j ≤ k, the ((i − 1)k + j)-th colour switch of off

is to the colour πi(c(i−1)k+j). We will show that off

will be able to process the whole input sequence, i.e.,

it will always have the elements of the needed colour

in the buffer, and that after pk colour switches off

will finish processing σ. As no algorithm can process σ

with less than pk colour switches (as pk is the number

of distinct colours), we will get that off is optimal.

We will also show that during any of the first (p− 1)k

colour switches, performing a colour switch to a differ-

ent colour than described above results in an additional

colour switch, yielding an sub-optimal algorithm.

Initially, off fills its buffer with the first k items

which are of k distinct colours K1. By definition, the

current request is now the second request of the colour

π1(c1), which is the colour switched to by off. off out-

puts both items of colour π1(c1) after this colour switch,

and an item with a new colour enters the buffer. The

buffer of off consists again of k items with distinct

colours. If any other colour c was switched to at this

point, the algorithm would only output the first item

of colour c, resulting in an additional colour switch to

colour c later, and yielding a sub-optimal algorithm. As-

sume that for some u < (p−1)k, where u = (i−1)k+ j

for some 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ k, the first

u−1 colour switches have been performed as described

above, and that after each colour switch the algorithm

has output two items of the current service colour. We

will now perform the inductive step from u−1 to u. The

buffer of the algorithm consists of k distinct colours,

and the current request is the request for πi(c(i−1)k+j).

If off switches to the colour πi(c(i−1)k+j), it will be

able to serve both items of this colour using one colour

switch. Also, no other colour switch can serve two items

of the same colour. This implies that an optimal algo-

rithm must switch to πi(c(i−1)k+j) at this point.

We complete the correctness proof for off by noting

that, after performing the first (p−1)k colour switches,

the buffer of off will contain the last k distinct colours.

Therefore, k last colour switches will output the remain-

ing 2k items of k distinct colours. ut

7.2 Tidy Algorithms

In this section, we define a class of algorithms called

tidy algorithms for serving the requests from Ψk. Infor-

mally, a tidy algorithm will always switch to a colour

c for which it can output two items of colour c after

one colour switch if such a colour c exists. For Ψk, that

means switching to a colour c when two items of colour

c are already in the buffer, or when the second request

of colour c is sure to be served (i.e., when the current

request is from an even phase i, where the permuta-

tion πi is the identity permutation). Tidy algorithms

are formally defined as follows.

18 Anna Adamaszek et al.

Definition 8 For a request sequence σ ∈ Ψk, when

performing a colour switch, a tidy algorithm algktidy
with a buffer of size k will switch (in order of priority)

to a colour c in the buffer such that

1. algktidy has the second item of colour c in the buffer,

2. c = πi(c
′) for some c′, where r(πi(c

′)) is the current

request and i is even,

3. c is any colour in the buffer of algktidy.

The following lemma shows that for σ ∈ Ψk we can

restrict our attention to tidy online algorithms.

Lemma 14 Any online algorithm alg can be con-

verted to an online tidy algorithm âlg such that, for

any σ ∈ Ψk, âlg(σ) ≤ alg(σ).

Proof Without loss of generality, we assume that alg is

lazy. We define âlg to be a lazy algorithm that will sim-

ulate alg and maintain a queue of the colour switches

performed by alg. Whenever âlg has to make a colour

switch, it considers the colour d at the top of the queue.

If switching to d does not violate the properties of a tidy

algorithm, âlg removes d from the queue and switches

to colour d.

If switching to colour d violates one of the first two

properties of a tidy algorithm, then switching to some

colour c does not. The algorithm âlg will switch to c.

Note that, since the colour c satisfies one of the first

two properties of a tidy algorithm, âlg will serve both

items of colour c on the current colour switch.

If switching to colour d violates the third property of

a tidy algorithm, d corresponds to a colour that has al-

ready been fully served by âlg (due to a colour switch

that had to be performed by âlg, as otherwise âlg

would have violated one of the first two properties of a

tidy algorithm). The colour d is popped from the queue

and the next colour at the top of the queue is consid-

ered.

The algorithm âlg will not perform more colour

switches than alg. ut

Lemma 15 Let algktidy be any tidy algorithm with a

buffer of size k, processing a request sequence σ ∈ Ψk.

Let the current request be the first request of an odd

phase i. Then the buffer of algktidy contains exactly the

k items Ki.

Proof Assume towards a contradiction that there is a

colour c ∈ Ki = {c(i−1)k+1, . . . , cik} which has been al-

ready served by algktidy. Colour c appears for the first

time in phase i − 1. Consider time τ when algktidy
switched to colour c. When switching to colour c,

algktidy used the third rule. The buffer of algktidy at

time τ consisted of items of k distinct colours, such

that each of the items is the first item of its colour, as

otherwise algktidy would use its first rule. The last item

which has been read from the input must have some

new colour cj , as this item is in the buffer at time τ ,

and otherwise cj would satisfy the first rule at time τ .

That means that at time τ the current request is of the

form c′ = πi−1(c`). As there are only k colours such

that only one item of the colour has appeared so far in

the input sequence, and the buffer of algktidy contains k

such colours, it means that an item of colour c′ is in the

buffer of algktidy at time τ . Therefore, a tidy algorithm

would switch to the colour c′ (due to the second rule

of tidy algorithms) instead of c, which contradicts the

assumption that the algorithm considered is tidy. ut

7.3 A Predetermined Tidy Algorithm

We will now define a class of predetermined tidy algo-

rithms for serving the requests from Ψk. These will be

tidy algorithms, which, before reading the first request

of an odd phase i into the buffer, fix a permutation π∗i
of elements in Ki, and, whenever a colour switch of the

third priority is required, the new service colour is cho-

sen in the order given by π∗i . Note that from Lemma 15

the items in the buffer of the tidy algorithm at the be-

ginning of the phase are exactly Ki. The formal defini-

tion of a predetermined tidy algorithm is the following.

Definition 9 A predetermined tidy algorithm algkpta
with a buffer of size k, processing a request sequence

σ ∈ Ψk fixes a permutation π∗i of elements in Ki before

reading into the buffer the first request of an odd phase

i. When performing a colour switch, algkpta will switch

(in order of priority) to a colour c in the buffer such

that

1. the second item of colour c is already in the buffer;

2. c = πi(c
′) for some c′, where r(πi(c

′)) is the current

request and i is even;

3. c = π∗i (`), s.t. for all j < `, no items of colour π∗i (j)

are in the buffer.

In the following, for an arbitrary request sequence

σ ∈ Ψk, we will compare the number of odd indices i,

such that the algorithms algktidy and algkpta optimally

serve all the colours from Ki ∪ Ki+1 (i.e., when there

is only one colour switch to each of these colours). For

an algorithm alg and a request sequence σ ∈ Ψk, let

malg(σ) be the number of odd indices i such that the

algorithm alg performs more than 2k colour switches

to the colours of Ki ∪ Ki+1.

Fact 1 For a request sequence σ ∈ Ψk and any tidy al-

gorithm algktidy, we have algktidy(σ) ≥ kp+malgk
tidy

(σ).

Reordering Buffer Management with Advice 19

We will now consider tidy and predetermined tidy

algorithms using b bits of advice per request, where all

the advice is given in advance.1 We will show that a

tidy algorithm cannot perform much better than some

predetermined tidy algorithm.

Lemma 16 Let algktidy be an online tidy algorithm for

rbm, using a buffer of size k, with b bits of advice per

request, where all the advice is given in advance. There

exists an online predetermined tidy algorithm algkpta
for the same parameters, such that, for all request se-

quences σ ∈ Ψk, malgk
pta

(σ) ≤ malgk
tidy

(σ).

Proof We will define a predetermined tidy algorithm,

algkpta, using b bits of advice per request that are re-

ceived in advance, that will simulate the given algo-

rithm algktidy using the same advice bits.

The idea to determine π∗i (i.e., the order in which

algkpta attempts to serve the colours Ki) for odd i is as

follows. There can be only one permutation of the items

in Ki in the request sequence, for which algktidy serves

the requests of the colours of Ki ∪Ki+1 with 2k colour

switches. It is enough that algkpta finds it by simulating

algktidy, and then sets π∗i to behave in the same way as

algktidy for this particular request sequence.

More formally, for i odd, to determine every π∗i ,

algkpta defines a σ′i to be given as input to a sim-

ulation of algktidy along with the advice received by

algkpta. The prefix of σ′i is σ[1], . . . , σ[2k(i − 1) + k],

i.e., the requests seen by algkpta to this point. Since

algktidy is tidy, by Lemma 15, immediately after bring-

ing σ[2k(i−1)+k] into the buffer, the buffer of algktidy
consists of the k colours Ki. For the next k subsequent

colour switches of algktidy, if the colour of the j-th

colour switch cj is in Ki, we append two request of

colours cj , cik+j to σ′i, where cik+j is a new colour. We

set π∗i (c(i−1)k+j) = cj and have algktidy continue serv-

ing σ′i. If cj is not in Ki or algktidy is unable to make

a colour switch (e.g. due to an inconsistency between

σ′ and the advice 2), then the simulation stops. In this

case, the remaining items of π∗i are defined in an arbi-

trary manner.

To show that malgk
pta

(σ) ≤ malgk
tidy

(σ), we need to

show that for every odd index i such that algktidy serves

the requests of the colours of Ki ∪Ki+1 with 2k colour

1 As we are constructing a lower bound, this assumption
only makes our results stronger.
2 In such a lower bound construction, the advice string can

be any sequence of bits. It is possible that appending a re-
quest of colour cj to σ′

i may contradict an advice string. For
instance, an advice string that indicates the colour of the cur-
rent request to be something other than cj . In such a case, the
actions of algk

tidy may be undefined for σ′
i and the given ad-

vice. Regardless, we know that algk
tidy will serve the requests

of the colours of πi with more than k colour switches.

switches, so does algkpta. By Lemma 13, if algktidy
serves the requests of the colours Ki∪Ki+1 in σ with 2k

colour switches, then the first k colour switches to serve

the requests of the colours in Ki ∪Ki+1 must be in Ki.
In such a situation, it follows from the construction of

π∗i above that π∗i = πi and, therefore, algkpta will serve

the requests of the colours of Ki ∪Ki+1 with 2k colour

switches. ut

7.4 Reduction from the q-SGKH Problem

As already mentioned, for the lower bound we will as-

sume that the algorithm receives all the advice in ad-

vance. We will use the lower bound framework as dis-

cussed in Section 2.2, i.e., we will perform a reduction

from the q-SGKH problem to the reordering buffer

management problem. Further, the request sequence

σrbm obtained by the reduction will be in the family

Ψk, as defined above, where k is the size of the buffer.

Due to Lemma 14, we can assume that any rbm algo-

rithm processing σrbm is a tidy algorithm, and we can

use the predetermined tidy algorithm algpta defined in

Lemma 16.

Lemma 17 Suppose that there is a ρ-competitive algo-

rithm for rbm with buffer of size k ≥ 2 using b bits of

advice per request, where 1 ≤ ρ ≤ 1 + 1
2k . Then, there

exists an algorithm for q-SGKH using 5kb bits of advice

per request, that is correct for at least (1− (ρ− 1)2k)n

characters of the n-length string, where q = k!.

Proof Let algkrbm be a ρ-competitive algorithm for rbm

using b bits of advice per request. We will design an

algorithm algq-SGKH for q-SGKH that will generate

a request sequence σrbm ∈ Ψk, use algkrbm to process

σrbm, and output a solution for q-SGKH based on this

solution.

We will now present the construction of σrbm. The

first k requests of σrbm are to k different colours. The

remaining requests of σrbm are defined, as follows, in an

online manner, to ensure that σrbm ∈ Ψk. Let Π be an

enumeration of all the possible permutations of length

k, and let g : Σ → {1, . . . , k!} be a bijection between Σ,

the alphabet of the q-SGKH problem (where |Σ| = q =

k!), and an index of a k-length permutation in Π. Let n

be the length of the input string σq-SGKH for q-SGKH.

Then σrbm will have 2n+ 1 phases.

We now define how the algorithm generates the

phases i and i + 1, after receiving the ith request

σq-SGKH[i]. Let c(2i−1)k+1, . . . , c2ik+k be 2k new colours

(i.e., colours which have not appeared in σrbm yet). The

algorithm algq-SGKH appends to σrbm requests to items

20 Anna Adamaszek et al.

with the following colours〈
π2i−1(c(2i−2)k+1), c(2i−1)k+1, . . . , π2i−1(c(2i−1)k), c2ik,

π2i(c(2i−1)k+1), c2ik+1, . . . , π2i(c2ik), c2ik+k
〉
,

where π2i−1 is the permutation at Π(g(σq-SGKH[i])) of

the last k new colours of the requests already appended

to σq-SGKH, i.e., colours c(2i−2)k+1, . . . , c(2i−1)k, and π2i
is the identity permutation of

〈
c(2i−1)k+1, . . . , c2ik

〉
.

These requests give us phases number 2i − 1 and 2i

of the σrbm sequence.

The i-th action of algq-SGKH is based on the per-

mutation π∗2i−1 of algkpta. Recall from the definition

of a predetermined tidy algorithm, that π∗2i−1 is deter-

mined before algkpta reads the first request of phase

2i − 1 into the buffer, i.e., it is determined based on

the first 2i − 2 phases of σrbm, which are generated

from σq-SGKH[1], . . . , σq-SGKH[i − 1]. The i-th action of

algq-SGKH is defined as the inverse function of g on the

index of π∗2i−1 in Π.

For each request in σq-SGKH, at most 5k requests are

generated for σrbm, which for algkrbm requires at most

5kb bits of advice. This is feasible, since algq-SGKH has

5kb bits of advice per request. The advice provided to

algkrbm is the same advice as provided to algq-SGKH.

From the definition of σrbm, optkrbm(σrbm) = 2kn.

Using this, the definition of algq-SGKH, and Fact 1, we

get that

algkrbm(σrbm) ≥ 2kn+malgk
rbm

(σrbm)⇐⇒
malgk

rbm
(σrbm) ≤ algkrbm(σrbm)− 2kn

= algkrbm(σrbm)− optkrbm(σrbm) . (2)

Now, we can bound from above the number of incorrect

characters in the output string (the number of misses)

generated by algq-SGKH for σq-SGKH as follows.

number of misses

≤malgk
rbm

(σrbm) , from Lemma 16,

≤algkrbm(σrbm)− optkrbm(σrbm) , from (2),

≤(ρ− 1)optkrbm(σrbm) , as algkrbm is ρ-comp.,

=(ρ− 1)2kn.

ut

We are now ready to prove the main lower bound

theorem.

Theorem 6 Any deterministic online algorithm with

advice for the reordering buffer management problem

with buffer of size k ≥ 2 requires at least 1
10 ·((1−Hk!(1−

α)) log k) bits of advice per request to be ρ-competitive

for 1 < ρ ≤ 1+ 1
2k−

1
2k·k! , where Hq is the q-ary entropy

function and α = 1− (ρ− 1)2k.

Proof For 1 < ρ ≤ 1 + 1
2k −

1
2k·k! , let algkrbm be a

ρ-competitive deterministic algorithm for the reorder-

ing buffer management problem with a buffer of size k,

using b bits of advice per request. Define q = k!. By

Lemma 17, there exists an algorithm for the q-SGKH

problem with 5kb bits of advice per request that is

correct for at least (1 − (ρ − 1)2k)n characters of the

n length string. The bounds on ρ and k imply that

q ≥ 2 and 1/q ≤ α < 1. Theorem 1 implies3 that

5kb ≥ (1−Hq(1− α)) log q and, therefore,

b ≥ (1−Hq(1− α))

5k
log q

≥ (1−Hk!(1− α))

10
log k , as q = k! ≥ kk/2.

ut

From Theorem 6, we get the following corollary.

Corollary 1 Any deterministic online algorithm with

advice for rbm with a buffer of size k ≥ 2 requires

Ω(log k) bits of advice per request to be 1-competitive.

Proof Let alg be a ρ-competitive deterministic online

algorithm, using b bits of advice per request, for the

reordering buffer management problem with buffer of

size k ≥ 2, where 1 < ρ ≤ 1 + 1
2k −

1
2k·k! . Let α =

1− (ρ− 1)2k. From Theorem 6, we have

b ≥ (1−Hk!(1− α))

10
log k . (3)

As ρ approaches 1 from above, α approaches 1 from be-

low and Hk!(1−α) approaches 0. Hence, (3) approaches
log k
10 as ρ approaches 1. ut

8 Conclusion

We presented a (1 + ε)-competitive algorithm with ad-

vice for the reordering buffer management problem, us-

ing O(log(1/ε)) bits of advice per request. We com-

plemented this result by providing a lower bound of

Ω(log k) on the number of bits of advice per request for

an online algorithm to achieve a competitive ratio of 1.

A natural question is whether our approach, in par-

ticular the structure of the near-optimal solution de-

scribed by the advice sequence, can be used to develop

a PTAS for the offline rbm problem. Note that our

algorithm can be used as an offline approximation al-

gorithm for rbm, with an exponential running time.

3 As noted previously, Theorem 1 holds even if the advice
is received in advance.

Reordering Buffer Management with Advice 21

Specifically, the algorithm can try all 2O(n log 1/ε) possi-

ble advice strings, for each of them simulate our algo-

rithm with advice, and output the best solution. That

gives an offline algorithm for rbm, with an approxi-

mation ratio of (1 + ε), with a total running time of

2O(n log 1/ε), using O(n) space. The näıve offline algo-

rithm that considers all k possibilities at each request,

and outputs an optimal solution, has a running time of

kO(n).

From the online perspective, it would be interesting

to obtain matching results for a more general version

of the rbm problem, when the cost of switching from a

colour c to a colour c′ depends on the colours c and c′.

Acknowledgments We would like to thank the re-

viewers for their thorough reading of the paper and

their helpful comments, which helped us to improve the

presentation of the paper.

References

1. Standard for information technology portable operating
system interface (posix(r)) base specifications, issue 7.
IEEE Std 1003.1, 2013 Edition (incorporates IEEE Std
1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013) pp.
1–3906 (2013). DOI 10.1109/IEEESTD.2013.6506091

2. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Al-
most tight bounds for reordering buffer management. In:
L. Fortnow, S.P. Vadhan (eds.) STOC, pp. 607–616. ACM
(2011)

3. Albers, S., Hellwig, M.: Online makespan minimization
with parallel schedules. In: R. Ravi, I.L. Gørtz (eds.) Al-
gorithm Theory - SWAT 2014 - 14th Scandinavian Sym-
posium and Workshops, Copenhagen, Denmark, July 2-
4, 2014. Proceedings, Lecture Notes in Computer Science,
vol. 8503, pp. 13–25. Springer (2014). DOI 10.1007/978-
3-319-08404-6 2. URL http://dx.doi.org/10.1007/978-3-
319-08404-6 2

4. Asahiro, Y., Kawahara, K., Miyano, E.: Np-hardness of
the sorting buffer problem on the uniform metric. Dis-
crete Applied Mathematics 160(10-11), 1453–1464 (2012)

5. Avigdor-Elgrabli, N., Rabani, Y.: An improved compet-
itive algorithm for reordering buffer management. In:
M. Charikar (ed.) SODA, pp. 13–21. SIAM (2010)

6. Avigdor-Elgrabli, N., Rabani, Y.: A constant factor ap-
proximation algorithm for reordering buffer management.
In: S. Khanna (ed.) SODA, pp. 973–984. SIAM (2013)

7. Avigdor-Elgrabli, N., Rabani, Y.: An optimal random-
ized online algorithm for reordering buffer manage-
ment. In: 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26-29 Octo-
ber, 2013, Berkeley, CA, USA, pp. 1–10 (2013). DOI
10.1109/FOCS.2013.9

8. Blandford, D.K., Blelloch, G.E.: Index compression
through document reordering. In: DCC, pp. 342–351.
IEEE Computer Society (2002)

9. Böckenhauer, H., Hromkovic, J., Komm, D., Krug,
S., Smula, J., Sprock, A.: The string guessing prob-
lem as a method to prove lower bounds on the
advice complexity. Theor. Comput. Sci. 554, 95–
108 (2014). DOI 10.1016/j.tcs.2014.06.006. URL
http://dx.doi.org/10.1016/j.tcs.2014.06.006

10. Böckenhauer, H.J., Komm, D., Královic, R., Královic,
R.: On the advice complexity of the k-server prob-
lem. In: L. Aceto, M. Henzinger, J. Sgall (eds.)
ICALP (1), Lecture Notes in Computer Science, vol.
6755, pp. 207–218. Springer (2011). Also as techni-
cal report at ftp://ftp.inf.ethz.ch/pub/publications/tech-
reports/7xx/703.pdf

11. Böckenhauer, H.J., Komm, D., Královic, R., Královic,
R., Mömke, T.: On the advice complexity of online prob-
lems. In: Y. Dong, D.Z. Du, O.H. Ibarra (eds.) ISAAC,
Lecture Notes in Computer Science, vol. 5878, pp. 331–340.
Springer (2009)

12. Chan, H.L., Megow, N., Sitters, R., van Stee, R.: A note
on sorting buffers offline. Theor. Comput. Sci. 423, 11–18
(2012)

13. Dobrev, S., Královič, R., Pardubská, D.: How much in-
formation about the future is needed? In: SOFSEM’08:
Proceedings of the 34th conference on Current trends in
theory and practice of computer science, pp. 247–258.
Springer-Verlag, Berlin, Heidelberg (2008)

14. Dohrau, J.: Online makespan scheduling with sublin-
ear advice. In: G.F. Italiano, T. Margaria-Steffen,
J. Pokorný, J. Quisquater, R. Wattenhofer (eds.) SOF-
SEM 2015: Theory and Practice of Computer Science
- 41st International Conference on Current Trends in
Theory and Practice of Computer Science, Pec pod
Sněžkou, Czech Republic, January 24-29, 2015. Proceed-
ings, Lecture Notes in Computer Science, vol. 8939, pp.
177–188. Springer (2015). DOI 10.1007/978-3-662-46078-
8 15. URL http://dx.doi.org/10.1007/978-3-662-46078-
8 15

15. Dorrigiv, R., He, M., Zeh, N.: On the advice complexity of
buffer management. In: K.M. Chao, T. sheng Hsu, D.T.
Lee (eds.) ISAAC, Lecture Notes in Computer Science, vol.
7676, pp. 136–145. Springer (2012)

16. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online
computation with advice. Theor. Comput. Sci. 412(24),
2642–2656 (2011)

17. Englert, M., Räcke, H., Westermann, M.: Reordering
buffers for general metric spaces. Theory of Computing
6(1), 27–46 (2010)

18. Englert, M., Westermann, M.: Reordering buffer manage-
ment for non-uniform cost models. In: L. Caires, G.F.
Italiano, L. Monteiro, C. Palamidessi, M. Yung (eds.)
ICALP, Lecture Notes in Computer Science, vol. 3580, pp.
627–638. Springer (2005)

19. Gutenschwager, K., Spiekermann, S., Voß, S.: A sequen-
tial ordering problem in automotive paint shops. In-
ternat. J. Production Research 42(9), 1865–1878 (2004).
DOI 10.1080/00207540310001646821

20. Hromkovic, J., Královic, R., Královic, R.: Information
complexity of online problems. In: P. Hlinený, A. Kucera
(eds.) MFCS, Lecture Notes in Computer Science, vol.
6281, pp. 24–36. Springer (2010)

21. Komm, D., Královic, R.: Advice complexity and barely
random algorithms. RAIRO - Theor. Inf. and Applic.
45(2), 249–267 (2011)

22. Krokowski, J., Räcke, H., Sohler, C., Westermann, M.:
Reducing state changes with a pipeline buffer. In:
B. Girod, M.A. Magnor, H.P. Seidel (eds.) VMV, p. 217.
Aka GmbH (2004)

23. Lewis, H.R., Papadimitriou, C.H.: Elements of the The-
ory of Computation, 2nd edn. Prentice Hall PTR, Upper
Saddle River, NJ, USA (1997)

24. Räcke, H., Sohler, C., Westermann, M.: Online schedul-
ing for sorting buffers. In: R.H. Möhring, R. Raman (eds.)

22 Anna Adamaszek et al.

ESA, Lecture Notes in Computer Science, vol. 2461, pp.
820–832. Springer (2002)

25. Renault, M.P., Rosén, A.: On online algorithms with ad-
vice for the k-server problem. Theory of Computing Sys-
tems pp. 1–19 (2012). DOI 10.1007/s00224-012-9434-z

26. Renault, M.P., Rosén, A., van Stee, R.: Online al-
gorithms with advice for bin packing and schedul-
ing problems. Theor. Comput. Sci. 600, 155–
170 (2015). DOI 10.1016/j.tcs.2015.07.050. URL
http://dx.doi.org/10.1016/j.tcs.2015.07.050

